Skip to main content

Deep Learning and Change Detection for Fall Recognition

  • Conference paper
  • First Online:
Engineering Applications of Neural Networks (EANN 2019)

Abstract

Early fall detection is a crucial research challenge since the time delay from fall to first aid is a key factor that determines the consequences of a fall. Wearable sensors allow a reliable way for daily-life activities tracking, able to detect immediately a high-risk fall via a machine learning framework. Towards this direction, accelerometer devices are used widely for the assessment of fall risk. Although there is a plethora of studies under this perspective with promising results, several challenges still remain such as the extremely demanding data and power management as well as the discovery of false positive falls. In this work we propose a complete methodology based on the combination of the computationally demanding convolutional neural networks along with a lightweight change detection method. Our basic assumption is that it is possible to control computational resources for the operation of a classifier, suffice to be activated when a strong change in user’s movements is identified. The proposed methodology was applied to real experimental data providing reliable results that justify the original hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.cdc.gov/injury/wisqars/.

  2. 2.

    https://userweb.cs.txstate.edu/~hn12/data/SmartFallDataSet/.

References

  1. Abujiya, M., Riaz, M., Lee, M.H.: Enhanced cumulative sum charts for monitoring process dispersion. PloS One 10, e0124520 (2015)

    Article  Google Scholar 

  2. Aguiar, B., Rocha, T., Silva, J., Sousa, I.: Accelerometer-based fall detection for smartphones. In: 2014 IEEE International Symposium on Medical Measurements and Applications (MeMeA), pp. 1–6. IEEE (2014)

    Google Scholar 

  3. Bagalà, F., et al.: Evaluation of accelerometer-based fall detection algorithms on real-world falls. PLOS ONE 7(5), 1–9 (2012)

    Article  Google Scholar 

  4. Bourke, A., ÓLaighin, G.: A threshold-based fall-detection algorithm using a bi-axial gyroscope sensor. Med. Eng. Phys. 30, 84–90 (2008)

    Article  Google Scholar 

  5. Brodersen, K.H., Ong, C.S., Stephan, K.E., Buhmann, J.M.: The balanced accuracy and its posterior distribution. In: 2010 20th International Conference on Pattern Recognition, pp. 3121–3124, August 2010

    Google Scholar 

  6. Brynolfsson, J., Sandsten, M.: Classification of one-dimensional non-stationary signals using the Wigner-Ville distribution in convolutional neural networks. In: 2017 25th European Signal Processing Conference (EUSIPCO), pp. 326–330, August 2017

    Google Scholar 

  7. Castillo, J.C., Carneiro, D., Serrano-Cuerda, J., Novais, P., Fernández-Caballero, A., Neves, J.: A multi-modal approach for activity classification and fall detection. Int. J. Syst. Sci. 45(4), 810–824 (2014)

    Article  Google Scholar 

  8. Chen, D., Feng, W., Zhang, Y., Li, X., Wang, T.: A wearable wireless fall detection system with accelerators. In: 2011 IEEE International Conference on Robotics and Biomimetics, pp. 2259–2263, December 2011

    Google Scholar 

  9. Chen, L., Hoey, J., Nugent, C.D., Cook, D.J., Yu, Z.: Sensor-based activity recognition. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 42(6), 790–808 (2012)

    Article  Google Scholar 

  10. Georgakopoulos, S.V., Tasoulis, S.K., Maglogiannis, I., Plagianakos, V.P.: On-line fall detection via mobile accelerometer data. In: Chbeir, Richard, Manolopoulos, Yannis, Maglogiannis, Ilias, Alhajj, Reda (eds.) AIAI 2015. IAICT, vol. 458, pp. 103–112. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23868-5_8

    Chapter  Google Scholar 

  11. Georgakopoulos, S.V., Tasoulis, S.K., Plagianakos, V.P.: Efficient change detection for high dimensional data streams. In: 2015 IEEE International Conference on Big Data (Big Data), pp. 2219–2222, October 2015

    Google Scholar 

  12. Granjon, P.: The CUSUM algorithm a small review (2014)

    Google Scholar 

  13. Greene, S., Thapliyal, H., Carpenter, D.: IoT-based fall detection for smart home environments. In: 2016 IEEE International Symposium on Nanoelectronic and Information Systems (iNIS), pp. 23–28, December 2016

    Google Scholar 

  14. Hsieh, K., Heller, T., Miller, A.B.: Risk factors for injuries and falls among adults with developmental disabilities. J. Intellect. Disabil. Res. 45(1), 76–82 (2001)

    Article  Google Scholar 

  15. Huang, C.L., Chung, C.Y.: A real-time model-based human motion tracking and analysis for human-computer interface systems. EURASIP J. Adv. Signal Process. 2004(11), 616891 (2004)

    Article  Google Scholar 

  16. Igual, R., Medrano, C.T., Plaza, I.: Challenges, issues and trends in fall detection systems. Biomed. Eng. Online 12, 66 (2013)

    Article  Google Scholar 

  17. Kau, L.J., Chen, C.S.: A smart phone-based pocket fall accident detection, positioning, and rescue system. IEEE J. Biomed. Health Inform. 19(1), 44–56 (2015)

    Article  Google Scholar 

  18. Kepski, M., Kwolek, B.: Fall detection using ceiling-mounted 3D depth camera. In: 2014 International Conference on Computer Vision Theory and Applications (VISAPP), vol. 2, pp. 640–647. IEEE (2014)

    Google Scholar 

  19. Kwolek, B., Kepski, M.: Human fall detection on embedded platform using depth maps and wireless accelerometer. Comput. Methods Programs Biomed. 117(3), 489–501 (2014)

    Article  Google Scholar 

  20. Ma, X., Wang, H., Xue, B., Zhou, M., Ji, B., Li, Y.: Depth-based human fall detection via shape features and improved extreme learning machine. IEEE J. Biomed. Health Inform. 18(6), 1915–1922 (2014)

    Article  Google Scholar 

  21. Maglogiannis, I., Doukas, C.: Intelligent health monitoring based on pervasive technologies and cloud computing. Int. J. Artif. Intell. Tools 23(03), 1460001 (2014)

    Article  Google Scholar 

  22. Maglogiannis, I., Ioannou, C., Tsanakas, P.: Fall detection and activity identification using wearable and hand-held devices. Integr. Comput.-Aided Eng. 23, 161–172 (2016)

    Article  Google Scholar 

  23. Manganaro, G., de Gyvez, J.P.: One-dimensional discrete-time CNN with multiplexed template-hardware. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 47(5), 764–769 (2000)

    Article  Google Scholar 

  24. Mauldin, T.R., Canby, M.E., Metsis, V., Ngu, A.H.H., Rivera, C.C.: SmartFall: A smartwatch-based fall detection system using deep learning. Sensors 18(10), 3363 (2018)

    Article  Google Scholar 

  25. Gia, T.N., et al.: IoT-based fall detection system with energy efficient sensor nodes, November 2016

    Google Scholar 

  26. Page, E.S.: Continuous inspection schemes. Biometrika 41(1/2), 100–115 (1954)

    Article  MathSciNet  Google Scholar 

  27. Perry, M., Pignatiello, J.J.: Estimating the time of step change with Poisson CUSUM and EWMA control charts. Int. J. Prod. Res. 49, 2857–2871 (2011)

    Article  Google Scholar 

  28. Pierleoni, P., Belli, A., Palma, L., Pellegrini, M., Pernini, L., Valenti, S.: A high reliability wearable device for elderly fall detection. IEEE Sens. J. 15(8), 4544–4553 (2015)

    Article  Google Scholar 

  29. Shen, R.K., Yang, C.Y., Shen, V.R., Chen, W.C.: A novel fall prediction system on smartphones. IEEE Sens. J. 17(6), 1865–1871 (2017)

    Article  Google Scholar 

  30. Tasoulis, S., Doukas, C., Plagianakos, V., Maglogiannis, I.: Statistical data mining of streaming motion data for activity and fall recognition in assistive environments. Neurocomputing 107, 87–96 (2013)

    Article  Google Scholar 

  31. Tong, L., Song, Q., Ge, Y., Liu, M.: Hmm-based human fall detection and prediction method using tri-axial accelerometer. IEEE Sens. J. 13(5), 1849–1856 (2013)

    Article  Google Scholar 

  32. Tran, P.H., Tran, K.P.: The efficiency of CUSUM schemes for monitoring the coefficient of variation. Appl. Stoch. Model. Bus. Ind. 32(6), 870–881 (2016)

    Article  MathSciNet  Google Scholar 

  33. Wang, D., Zhang, L., Xiong, Q.: A nonparametric CUSUM control chart based on the Mann-Whitney statistic. Commun. Stat.-Theory Methods 46, 2017 (2017)

    Article  MathSciNet  Google Scholar 

  34. Wang, J., Zhang, Z., Bin, L., Lee, S., Sherratt, R.: An enhanced fall detection system for elderly person monitoring using consumer home networks. IEEE Trans. Consum. Electron. 60, 23–29 (2014)

    Article  Google Scholar 

  35. Xu, T., Zhou, Y., Zhu, J.: New advances and challenges of fall detection systems: a survey. Appl. Sci. 8(3), 418 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

This project has received funding from the Hellenic Foundation for Research and Innovation (HFRI) and the General Secretariat for Research and Technology (GSRT), under grant agreement No. 1901.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sotiris K. Tasoulis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tasoulis, S.K., Mallis, G.I., Georgakopoulos, S.V., Vrahatis, A.G., Plagianakos, V.P., Maglogiannis, I.G. (2019). Deep Learning and Change Detection for Fall Recognition. In: Macintyre, J., Iliadis, L., Maglogiannis, I., Jayne, C. (eds) Engineering Applications of Neural Networks. EANN 2019. Communications in Computer and Information Science, vol 1000. Springer, Cham. https://doi.org/10.1007/978-3-030-20257-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20257-6_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20256-9

  • Online ISBN: 978-3-030-20257-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics