Skip to main content

Incriminating Evidence for the Role of the Microvasculature in Atherosclerosis

  • Chapter
  • First Online:
Atherosclerosis Pathogenesis and Microvascular Dysfunction

Abstract

Different vascular beds show a different susceptibility to atherosclerosis and, even within diseased vessels themselves, plaques display a distinct localization. Vasa vasorum and blood vessel wall lymphatics are distinctly distributed in the arterial system and we propose that their differential distribution plays an important role in the site specificity of disease manifestation. We present the current evidence that obstruction, hypoperfusion, or leakage of vasa vasorum as well as lymphatic dysfunction leads to plaque development. There is also sufficient evidence to postulate a similar pathomechanism in arterial aneurysm and dissection . In atherosclerosis research, the primary focus is always on the endothelium of the parent vessel when, as we will suggest in the following chapter, it is the endothelium of the vasa vasorum that is more susceptible to dysfunction during all stages of disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Delewi R, Yang H, Kastelein J. Atherosclerosis. 2013. www.textbookofcardiology.org/wiki/Atherosclerosis. Accessed 4 Jan 2018.

  2. Taggart DP. Current status of arterial grafts for coronary artery bypass grafting. Ann Cardiothorac Surg. 2013;2:427–30. https://doi.org/10.3978/j.issn.2225-319X.2013.07.21.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Otsuka F, Yahagi K, Sakakura K, Virmani R. Why is the mammary artery so special and what protects it from atherosclerosis? Ann Cardiothorac Surg. 2013;2:519–26. https://doi.org/10.3978/2416.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hildebrandt HA, Gossl M, Mannheim D, et al. Differential distribution of vasa vasorum in different vascular beds in humans. Atherosclerosis. 2008;199:47–54. https://doi.org/10.1016/j.atherosclerosis.2007.09.015.

    Article  CAS  PubMed  Google Scholar 

  5. Galili O, Herrmann J, Woodrum J, et al. Adventitial vasa vasorum heterogeneity among different vascular beds. J Vasc Surg. 2004;40:529–35. https://doi.org/10.1016/j.jvs.2004.06.032.

    Article  PubMed  Google Scholar 

  6. Sano M, Unno N, Sasaki T, et al. Topologic distributions of vasa vasorum and lymphatic vasa vasorum in the aortic adventitia-Implications for the prevalence of aortic diseases. Atherosclerosis. 2016;247:127–34. https://doi.org/10.1016/j.atherosclerosis.2016.02.007.

    Article  CAS  PubMed  Google Scholar 

  7. Gössl M, Versari D, Mannheim D, et al. Increased spatial vasa vasorum density in the proximal LAD in hypercholesterolemia-Implications for vulnerable plaque-development. Atherosclerosis. 2007;192:246–52. https://doi.org/10.1016/j.atherosclerosis.2006.07.004.

    Article  CAS  PubMed  Google Scholar 

  8. Mulligan-Kehoe MJ. The vasa vasorum in diseased and nondiseased arteries. AJP Hear Circ Physiol. 2010;298:H295–305. https://doi.org/10.1152/ajpheart.00884.2009.

    Article  CAS  Google Scholar 

  9. Kampschulte M, Brinkmann A, Stieger P, et al. Quantitative CT imaging of the spatio-temporal distribution patterns of vasa vasorum in aortas of ApoE-/-/LDL-/- double knockout mice. Atherosclerosis. 2010;212:444–50. https://doi.org/10.1016/j.atherosclerosis.2010.07.010.

    Article  CAS  PubMed  Google Scholar 

  10. Nishimiya K, Matsumoto Y, Wang H, et al. Absence of adventitial vasa vasorum formation at the coronary segment with myocardial bridge-An optical coherence tomography study. Int J Cardiol. 2018;250:275–7. https://doi.org/10.1016/j.ijcard.2017.09.211.

    Article  PubMed  Google Scholar 

  11. Langheinrich AC, Michniewicz A, Bohle RM, Ritman EL. Vasa vasorum neovascularization and lesion distribution among different vascular beds in ApoE-/-/LDL-/- double knockout mice. Atherosclerosis. 2007;191:73–81. https://doi.org/10.1016/j.atherosclerosis.2006.05.021.

    Article  CAS  PubMed  Google Scholar 

  12. Langheinrich AC, Michniewicz A, Sedding DG, et al. Correlation of vasa vasorum neovascularization and plaque progression in aortas of apolipoprotein E-/-/low-density lipoprotein-/- double knockout mice. Arterioscler Thromb Vasc Biol. 2006;26:347–52. https://doi.org/10.1161/01.ATV.0000196565.38679.6d.

    Article  CAS  PubMed  Google Scholar 

  13. Köster K. Endarteritis and Arteritis. Berl Klin Wochenschrift. 1876;13:454–5.

    Google Scholar 

  14. Robertson HP. Vascularization of the thoracic aorta. Arch Path. 1929;8:881.

    Google Scholar 

  15. Galili O, Sattler KJ, Herrmann J, et al. Experimental hypercholesterolemia differentially affects adventitial vasa vasorum and vessel structure of the left internal thoracic and coronary arteries. J Thorac Cardiovasc Surg. 2005;129:767–72. https://doi.org/10.1016/j.jtcvs.2004.08.014.

    Article  PubMed  Google Scholar 

  16. Clarke JA. An x-ray microscopic study of the blood-supply to the aortic bifurcation and common iliac arteries. Br J Surg. 1966;53:354–8.

    Article  CAS  PubMed  Google Scholar 

  17. Geiringer E. Intimal vascularisation and artherosclerosis. J Pathol Bacteriol. 1951;63:201–11. https://doi.org/10.1002/path.1700630204.

    Article  CAS  PubMed  Google Scholar 

  18. Kumamoto M, Nakashima Y, Sueishi K. Intimal neovascularization in human coronary atherosclerosis: its origin and pathophysiological significance. Hum Pathol. 1995;26:450–6.

    Article  CAS  PubMed  Google Scholar 

  19. van Dijk RA, Virmani R, von der Thüsen JH, et al. The natural history of aortic atherosclerosis: a systematic histopathological evaluation of the peri-renal region. Atherosclerosis. 2010;210:100–6. https://doi.org/10.1016/j.atherosclerosis.2009.11.016.

    Article  CAS  PubMed  Google Scholar 

  20. Uchida Y. Recent advances in fluorescent angioscopy for molecular imaging of human atherosclerotic coronary plaque. J Atheroscler Thromb. 2017. https://doi.org/10.5551/jat.40352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nakashima Y, Wight TN, Sueishi K. Early atherosclerosis in humans: role of diffuse intimal thickening and extracellular matrix proteoglycans. Cardiovasc Res. 2008;79:14–23. https://doi.org/10.1093/cvr/cvn099.

    Article  CAS  PubMed  Google Scholar 

  22. Maiellaro K, Taylor W. The role of the adventitia in vascular inflammation. Cardiovasc Res. 2007;75:640–8. https://doi.org/10.1016/j.cardiores.2007.06.023.

    Article  CAS  PubMed  Google Scholar 

  23. Boyle EC, Sedding DG, Haverich A. Targeting vasa vasorum dysfunction to prevent atherosclerosis. Vascul Pharmacol. 2017;96–98:5–10. https://doi.org/10.1016/j.vph.2017.08.003.

    Article  CAS  PubMed  Google Scholar 

  24. Nakashima Y, Fujii H, Sumiyoshi S, et al. Early human atherosclerosis: accumulation of lipid and proteoglycans in intimal thickenings followed by macrophage infiltration. Arterioscler Thromb Vasc Biol. 2007;27:1159–65. https://doi.org/10.1161/ATVBAHA.106.134080.

    Article  CAS  PubMed  Google Scholar 

  25. Herrmann J, Lerman LO, Rodriguez-Porcel M, et al. Coronary vasa vasorum neovascularization precedes epicardial endothelial dysfunction in experimental hypercholesterolemia. Cardiovasc Res. 2001;51:762–6.

    Article  CAS  PubMed  Google Scholar 

  26. Häkkinen T, Karkola K, Ylä-Herttuala S. Macrophages, smooth muscle cells, endothelial cells, and T-cells express CD40 and CD40L in fatty streaks and more advanced human atherosclerotic lesions. Colocalization with epitopes of oxidized low-density lipoprotein, scavenger receptor, and CD16 (Fc gammaRIII). Virchows Arch. 2000;437:396–405.

    Article  PubMed  Google Scholar 

  27. Ylä-Herttuala S, Bentzon JF, Daemen M, et al. Stabilisation of atherosclerotic plaques. Position paper of the European Society of Cardiology (ESC) Working Group on atherosclerosis and vascular biology. Thromb Haemost. 2011;106:1–19. https://doi.org/10.1160/TH10-12-0784.

    Article  CAS  PubMed  Google Scholar 

  28. Zhu X-Y. Antioxidant intervention attenuates myocardial neovascularization in hypercholesterolemia. Circulation. 2004;109:2109–15. https://doi.org/10.1161/01.CIR.0000125742.65841.8B.

    Article  CAS  PubMed  Google Scholar 

  29. Aufrecht E. Die Genese der Arteriosklerose (Arteriitis). Deu Arch f klin Med. 1908;93:1–14.

    Google Scholar 

  30. Martin H. Recherches sur la nature et la pathogénie des lésions viscérales consécutives à l’endartérite oblitérante et progressive. Scléroses dystrophiques. Rev méd. 1881;1:369.

    Google Scholar 

  31. Nakata Y, Shionoya S. Vascular lesions due to obstruction of the vasa vasorum. Nature. 1966;212:1258–9.

    Article  CAS  PubMed  Google Scholar 

  32. Reuter K. Neue befunde von Spirochaeta Pallida in menschlichen Körper und ihre Bedeutung für die Aetiologie der Syphilis. Zeitschrift für Hyg und Infekt. 1906;54:49–60.

    Article  Google Scholar 

  33. O’Regan AW, Castro C, Lukehart SA, et al. Barking up the wrong tree? Use of polymerase chain reaction to diagnose syphilitic aortitis. Thorax. 2002;57:917–8.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Stone JR, Bruneval P, Angelini A, et al. Consensus statement on surgical pathology of the aorta from the Society for Cardiovascular Pathology and the Association for European Cardiovascular Pathology: I. Inflammatory diseases. Cardiovasc Pathol. 2015;24:267–78. https://doi.org/10.1016/j.carpath.2015.05.001.

    Article  PubMed  Google Scholar 

  35. Heistad DD, Marcus ML. Role of vasa vasorum in nourishment of the aorta. Blood Vessel. 1979;16:225–38.

    CAS  Google Scholar 

  36. Heistad DD, Marcus ML, Larsen GE, Armstrong ML. Role of vasa vasorum in nourishment of the aortic wall. Am J Physiol. 1981;240:H781–7.

    CAS  PubMed  Google Scholar 

  37. Barker SG, Talbert A, Cottam S, et al. Arterial intimal hyperplasia after occlusion of the adventitial vasa vasorum in the pig. Arterioscler Thromb Vasc Biol. 1993;13:70–7. https://doi.org/10.1161/01.ATV.13.1.70.

    Article  CAS  Google Scholar 

  38. Booth RFG, Martin JF, Honey AC, et al. Rapid development of atherosclerotic lesions in the rabbit carotid artery induced by perivascular manipulation. Atherosclerosis. 1989;76:257–68. https://doi.org/10.1016/0021-9150(89)90109-3.

    Article  CAS  PubMed  Google Scholar 

  39. Brody WR, Angeli WW, Kosek JC. Histologic fate of the venous coronary artery bypass in dogs. Am J Pathol. 1972;66:111–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Billingham ME. Endomyocardial biopsy diagnosis of acute rejection in cardiac allografts. Prog Cardiovasc Dis. 1990;33:11–8.

    Article  CAS  PubMed  Google Scholar 

  41. Fujita M, Russell ME, Masek MA, et al. Graft vascular disease in the great vessels and vasa vasorum. Hum Pathol. 1993;24:1067–72.

    Article  CAS  PubMed  Google Scholar 

  42. Caves PK, Stinson EB, Billingham ME, et al. Diagnosis of human cardiac allograft rejection by serial cardiac biopsy. J Thorac Cardiovasc Surg. 1973;66:461–6.

    CAS  PubMed  Google Scholar 

  43. Barner HB, Farkas EA. Conduits for coronary bypass: vein grafts. Korean J Thorac Cardiovasc Surg. 2012;45:275–86. https://doi.org/10.5090/kjtcs.2012.45.5.275.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Gournay V. The ductus arteriosus: physiology, regulation, and functional and congenital anomalies. Arch Cardiovasc Dis. 2011;104:578–85. https://doi.org/10.1016/j.acvd.2010.06.006.

    Article  PubMed  Google Scholar 

  45. Kajino H, Goldbarg S, Roman C, et al. Vasa vasorum hypoperfusion is responsible for medial hypoxia and anatomic remodeling in the newborn lamb ductus arteriosus. Pediatr Res. 2002;51:228–35. https://doi.org/10.1203/00006450-200202000-00017.

    Article  PubMed  Google Scholar 

  46. Stefanadis CI, Karayannacos PE, Boudoulas HK, et al. Medial necrosis and acute alterations in aortic distensibility following removal of the vasa vasorum of canine ascending aorta. Cardiovasc Res. 1993;27:951–6.

    Article  CAS  PubMed  Google Scholar 

  47. Stefanadis C, Vlachopoulos C, Karayannacos P, et al. Effect of vasa vasorum flow on structure and function of the aorta in experimental animals. Circulation. 1995;91:2669–78.

    Article  CAS  PubMed  Google Scholar 

  48. Rademakers T, Douma K, Hackeng TM, et al. Plaque-associated vasa vasorum in aged apolipoprotein E-deficient mice exhibit proatherogenic functional features in vivo. Arterioscler Thromb Vasc Biol. 2013;33:249–56. https://doi.org/10.1161/ATVBAHA.112.300087.

    Article  CAS  PubMed  Google Scholar 

  49. Jeziorska M, Woolley DE. Neovascularization in early atherosclerotic lesions of human carotid arteries: its potential contribution to plaque development. Hum Pathol. 1999;30:919–25.

    Article  CAS  PubMed  Google Scholar 

  50. Dunmore BJ, McCarthy MJ, Naylor AR, Brindle NPJ. Carotid plaque instability and ischemic symptoms are linked to immaturity of microvessels within plaques. J Vasc Surg. 2007;45:155–9. https://doi.org/10.1016/j.jvs.2006.08.072.

    Article  PubMed  Google Scholar 

  51. Sluimer JC, Daemen MJ. Novel concepts in atherogenesis: angiogenesis and hypoxia in atherosclerosis. J Pathol. 2009;218:7–29. https://doi.org/10.1002/path.2518.

    Article  PubMed  Google Scholar 

  52. Zhang Y, Cliff WJ, Schoefl GI, Higgins G. Immunohistochemical study of intimal microvessels in coronary atherosclerosis. Am J Pathol. 1993;143:164–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Moreno PR, Purushothaman KR, Fuster V, et al. Plaque neovascularization is increased in ruptured atherosclerotic lesions of human aorta: implications for plaque vulnerability. Circulation. 2004;110:2032–8. https://doi.org/10.1161/01.CIR.0000143233.87854.23.

    Article  PubMed  Google Scholar 

  54. Eriksson EE. Intravital microscopy on atherosclerosis in apolipoprotein e-deficient mice establishes microvessels as major entry pathways for leukocytes to advanced lesions. Circulation. 2011;124:2129–38. https://doi.org/10.1161/CIRCULATIONAHA.111.030627.

    Article  CAS  PubMed  Google Scholar 

  55. Moulton KS, Vakili K, Zurakowski D, et al. Inhibition of plaque neovascularization reduces macrophage accumulation and progression of advanced atherosclerosis. Proc Natl Acad Sci. 2003;100:4736–41. https://doi.org/10.1073/pnas.0730843100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nakashima Y, Raines EW, Plump AS, et al. Upregulation of VCAM-1 and ICAM-1 at atherosclerosis-prone sites on the endothelium in the ApoE-deficient mouse. Arterioscler Thromb Vasc Biol. 1998;18:842–51.

    Article  CAS  PubMed  Google Scholar 

  57. Skinner SA, O’Brien PE. The microvascular structure of the normal colon in rats and humans. J Surg Res. 1996;61:482–90. https://doi.org/10.1006/jsre.1996.0151.

    Article  CAS  Google Scholar 

  58. O’Brien KD, Allen MD, McDonald TO, et al. Vascular cell adhesion molecule-1 is expressed in human coronary atherosclerotic plaques. Implications for the mode of progression of advanced coronary atherosclerosis. J Clin Invest. 1993;92:945–51. https://doi.org/10.1172/JCI116670.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Virmani R, Kolodgie FD, Burke AP, et al. Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol. 2005;25:2054–61. https://doi.org/10.1161/01.ATV.0000178991.71605.18.

    Article  CAS  PubMed  Google Scholar 

  60. Sluimer JC, Kolodgie FD, Bijnens APJJ, et al. Thin-walled microvessels in human coronary atherosclerotic plaques show incomplete endothelial junctions. J Am Coll Cardiol. 2009;53:1517–27. https://doi.org/10.1016/j.jacc.2008.12.056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Michel J-B, Virmani R, Arbustini E, Pasterkamp G. Intraplaque haemorrhages as the trigger of plaque vulnerability. Eur Heart J. 2011;32:1977–85. https://doi.org/10.1093/eurheartj/ehr054.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Van der Donckt C, Van Herck JL, Schrijvers DM, et al. Elastin fragmentation in atherosclerotic mice leads to intraplaque neovascularization, plaque rupture, myocardial infarction, stroke, and sudden death. Eur Heart J. 2015;36:1049–58. https://doi.org/10.1093/eurheartj/ehu041.

    Article  CAS  PubMed  Google Scholar 

  63. Virchow R. Die Cellularpathologie in ihrer Begründung auf physiologische und pathologische Gewebelehre. Berlin: Hirschwald; 1858.

    Google Scholar 

  64. Johnsen SH, Forsdahl SH, Singh K, Jacobsen BK. Atherosclerosis in abdominal aortic aneurysms: a causal event or a process running in parallel? The Tromsø study. Arterioscler Thromb Vasc Biol. 2010;30:1263–8. https://doi.org/10.1161/ATVBAHA.110.203588.

    Article  CAS  PubMed  Google Scholar 

  65. Sterpetti AV, Feldhaus RJ, Schultz RD, Blair EA. Identification of abdominal aortic aneurysm patients with different clinical features and clinical outcomes. Am J Surg. 1988;156:466–9.

    Article  CAS  PubMed  Google Scholar 

  66. Peshkova IO, Schaefer G, Koltsova EK. Atherosclerosis and aortic aneurysm-is inflammation a common denominator? FEBS J. 2016;283:1636–52. https://doi.org/10.1111/febs.13634.

    Article  CAS  PubMed  Google Scholar 

  67. Ballaro A, Cortina-Borja M, Collin J. A seasonal variation in the incidence of ruptured abdominal aortic aneurysms. Eur J Vasc Endovasc Surg. 1998;15:429–31.

    Article  CAS  PubMed  Google Scholar 

  68. Xie N, Zou L, Ye L. The effect of meteorological conditions and air pollution on the occurrence of type A and B acute aortic dissections. Int J Biometeorol. 2018;62:1607–13. https://doi.org/10.1007/s00484-018-1560-0.

    Article  PubMed  Google Scholar 

  69. Brennan PJ, Greenberg G, Miall WE, Thompson SG. Seasonal variation in arterial blood pressure. Br Med J (Clin Res Ed). 1982;285:919–23.

    Article  CAS  Google Scholar 

  70. Hata T, Ogihara T, Maruyama A, et al. The seasonal variation of blood pressure in patients with essential hypertension. Clin Exp Hypertens A. 1982;4:341–54.

    CAS  PubMed  Google Scholar 

  71. Imai Y, Munakata M, Tsuji I, et al. Seasonal variation in blood pressure in normotensive women studied by home measurements. Clin Sci (Lond). 1996;90:55–60.

    Article  CAS  Google Scholar 

  72. Iwahori T, Miura K, Obayashi K, et al. Seasonal variation in home blood pressure: findings from nationwide web-based monitoring in Japan. BMJ Open. 2018;8:e017351. https://doi.org/10.1136/bmjopen-2017-017351.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Jun X, Jin G, Fu C, et al. PM2.5 promotes abdominal aortic aneurysm formation in angiotensin II-infused apoe-/- mice. Biomed Pharmacother. 2018;104:550–7. https://doi.org/10.1016/j.biopha.2018.04.107.

    Article  CAS  PubMed  Google Scholar 

  74. Pisano C, Balistreri CR, Ricasoli A, Ruvolo G. Cardiovascular disease in ageing: an overview on thoracic aortic aneurysm as an emerging inflammatory disease. Mediators Inflamm. 2017;2017:1274034. https://doi.org/10.1155/2017/1274034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Schönbeck U, Sukhova GK, Gerdes N, Libby P. T(H)2 predominant immune responses prevail in human abdominal aortic aneurysm. Am J Pathol. 2002;161:499–506. https://doi.org/10.1016/S0002-9440(10)64206-X.

    Article  PubMed  PubMed Central  Google Scholar 

  76. He R, Guo D-C, Estrera AL, et al. Characterization of the inflammatory and apoptotic cells in the aortas of patients with ascending thoracic aortic aneurysms and dissections. J Thorac Cardiovasc Surg. 2006;131:671–8. https://doi.org/10.1016/j.jtcvs.2005.09.018.

    Article  PubMed  Google Scholar 

  77. He R, Guo D-C, Sun W, et al. Characterization of the inflammatory cells in ascending thoracic aortic aneurysms in patients with Marfan syndrome, familial thoracic aortic aneurysms, and sporadic aneurysms. J Thorac Cardiovasc Surg. 2008;136(922–9):929.e1. https://doi.org/10.1016/j.jtcvs.2007.12.063.

    Article  Google Scholar 

  78. Billaud M, Hill JC, Richards TD, et al. Medial hypoxia and adventitial vasa vasorum remodeling in human ascending aortic aneurysm. Front Cardiovasc Med. 2018;5:124. https://doi.org/10.3389/fcvm.2018.00124.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Guo D-C, Pannu H, Tran-Fadulu V, et al. Mutations in smooth muscle alpha-actin (ACTA2) lead to thoracic aortic aneurysms and dissections. Nat Genet. 2007;39:1488–93. https://doi.org/10.1038/ng.2007.6.

    Article  CAS  PubMed  Google Scholar 

  80. Tanaka H, Zaima N, Sasaki T, et al. Adventitial vasa vasorum arteriosclerosis in abdominal aortic aneurysm. PLoS One. 2013;8:e57398. https://doi.org/10.1371/journal.pone.0057398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tanaka H, Zaima N, Sasaki T, et al. Hypoperfusion of the adventitial vasa vasorum develops an abdominal aortic aneurysm. PLoS One. 2015;10:e0134386. https://doi.org/10.1371/journal.pone.0134386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kessler K, Borges LF, Ho-Tin-Noé B, et al. Angiogenesis and remodelling in human thoracic aortic aneurysms. Cardiovasc Res. 2014;104:147–59. https://doi.org/10.1093/cvr/cvu196.

    Article  CAS  PubMed  Google Scholar 

  83. Tyson MD. Dissecting aneurysms. Am J Pathol. 1931;7(581–604):13.

    PubMed  Google Scholar 

  84. Hirst AE, Johns VJ, Kime SW. Dissecting aneurysm of the aorta: a review of 505 cases. Med (Baltimore). 1958;37:217–79.

    Article  Google Scholar 

  85. Osada H, Kyogoku M, Ishidou M, et al. Aortic dissection in the outer third of the media: what is the role of the vasa vasorum in the triggering process? Eur J Cardiothorac Surg. 2013;43:e82–8. https://doi.org/10.1093/ejcts/ezs640.

    Article  PubMed  Google Scholar 

  86. Völker W, Dittrich R, Grewe S, et al. The outer arterial wall layers are primarily affected in spontaneous cervical artery dissection. Neurology. 2011;76:1463–71. https://doi.org/10.1212/WNL.0b013e318217e71c.

    Article  PubMed  Google Scholar 

  87. Hayes SN, Kim ESH, Saw J, et al. Spontaneous coronary artery dissection: current state of the science: a scientific statement from the American heart association. Circulation. 2018;137:e523–57. https://doi.org/10.1161/CIR.0000000000000564.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Adlam D, Alfonso F, Maas A, et al. European Society of Cardiology, acute cardiovascular care association, SCAD study group: a position paper on spontaneous coronary artery dissection. Eur Heart J. 2018;39:3353–68. https://doi.org/10.1093/eurheartj/ehy080.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Thomas LC, Hall LA, Attia JR, et al. Seasonal variation in spontaneous cervical artery dissection: comparing between UK and Australian sites. J Stroke Cerebrovasc Dis. 2017;26:177–85. https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.09.006.

    Article  PubMed  Google Scholar 

  90. Thomas LC, Makaroff AP, Oldmeadow C, et al. Seasonal variation in cervical artery dissection in the Hunter New England region, New South Wales, Australia: a retrospective cohort study. Musculoskelet Sci Pract. 2017;27:106–11. https://doi.org/10.1016/j.math.2016.10.007.

    Article  PubMed  Google Scholar 

  91. Takagi H, Ando T, Umemoto T, (ALICE [All-Literature Investigation of Cardiovascular Evidence] Group). Meta-analysis of seasonal incidence of aortic dissection. Am J Cardiol. 2017;120:700–7. https://doi.org/10.1016/j.amjcard.2017.05.040.

    Article  PubMed  Google Scholar 

  92. Vitale J, Manfredini R, Gallerani M, et al. Chronobiology of acute aortic rupture or dissection: a systematic review and a meta-analysis of the literature. Chronobiol Int. 2015;32:385–94. https://doi.org/10.3109/07420528.2014.983604.

    Article  PubMed  Google Scholar 

  93. Drozdz K, Janczak D, Dziegiel P, et al. Adventitial lymphatics of internal carotid artery in healthy and atherosclerotic vessels. Folia Histochem Cytobiol. 2008;46:433–6. https://doi.org/10.2478/v10042-008-0083-7.

    Article  PubMed  Google Scholar 

  94. Drozdz K, Janczak D, Dziegiel P, et al. Adventitial lymphatics and atherosclerosis. Lymphology. 2012;45:26–33.

    CAS  PubMed  Google Scholar 

  95. Kholová I, Dragneva G, Čermáková P, et al. Lymphatic vasculature is increased in heart valves, ischaemic and inflamed hearts and in cholesterol-rich and calcified atherosclerotic lesions. Eur J Clin Invest. 2011;41:487–97. https://doi.org/10.1111/j.1365-2362.2010.02431.x.

    Article  PubMed  Google Scholar 

  96. Taher M, Nakao S, Zandi S, et al. Phenotypic transformation of intimal and adventitial lymphatics in atherosclerosis: a regulatory role for soluble VEGF receptor 2. FASEB J. 2016;30:2490–9. https://doi.org/10.1096/fj.201500112.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Nakano T, Nakashima Y, Yonemitsu Y, et al. Angiogenesis and lymphangiogenesis and expression of lymphangiogenic factors in the atherosclerotic intima of human coronary arteries. Hum Pathol. 2005;36:330–40. https://doi.org/10.1016/j.humpath.2005.01.001.

    Article  CAS  PubMed  Google Scholar 

  98. Eliska O, Eliskova M, Miller AJ. The absence of lymphatics in normal and atherosclerotic coronary arteries in man: a morphologic study. Lymphology. 2006;39:76–83.

    CAS  PubMed  Google Scholar 

  99. Doyle B, Caplice N. Plaque neovascularization and antiangiogenic therapy for atherosclerosis. J Am Coll Cardiol. 2007;49:2073–80. https://doi.org/10.1016/j.jacc.2007.01.089.

    Article  PubMed  Google Scholar 

  100. Cueni LN, Detmar M. The lymphatic system in health and disease. Lymphat Res Biol. 2008;6:109–22. https://doi.org/10.1089/lrb.2008.1008.

    Article  PubMed  Google Scholar 

  101. Lorier G, Touriño C, Kalil RAK. Coronary angiogenesis as an endogenous response to myocardial ischemia in adults. Arq Bras Cardiol. 2011;97:e140–8.

    Article  CAS  PubMed  Google Scholar 

  102. Kutkut I, Meens MJ, McKee TA, et al. Lymphatic vessels: an emerging actor in atherosclerotic plaque development. Eur J Clin Invest. 2015;45:100–8. https://doi.org/10.1111/eci.12372.

    Article  PubMed  Google Scholar 

  103. Miller AJ, DeBoer A, Palmer A. The role of the lymphatic system in coronary atherosclerosis. Med Hypotheses. 1992;37:31–6.

    Article  CAS  PubMed  Google Scholar 

  104. Nádasy GL, Solti F, Monos E, et al. Effect of two week lymphatic occlusion on the mechanical properties of dog femoral arteries. Atherosclerosis. 1989;78:251–60.

    Article  PubMed  Google Scholar 

  105. Nakata Y, Shionoya S. Structure of lymphatics in the aorta and the periaortic tissues, and vascular lesions caused by disturbance of the lymphatics. Lymphology. 1979;12:18–9.

    CAS  PubMed  Google Scholar 

  106. Aldrich MB, Sevick-Muraca EM. Cytokines are systemic effectors of lymphatic function in acute inflammation. Cytokine. 2013;64:362–9. https://doi.org/10.1016/j.cyto.2013.05.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zawieja DC, Greiner ST, Davis KL, et al. Reactive oxygen metabolites inhibit spontaneous lymphatic contractions. Am J Physiol. 1991;260:H1935–43. https://doi.org/10.1152/ajpheart.1991.260.6.H1935.

    Article  CAS  PubMed  Google Scholar 

  108. Milasan A, Ledoux J, Martel C. Lymphatic network in atherosclerosis: the underestimated path. Futur Sci OA. 2015;1:FSO61. https://doi.org/10.4155/fso.15.61.

  109. Llodra J, Angeli V, Liu J, et al. Emigration of monocyte-derived cells from atherosclerotic lesions characterizes regressive, but not progressive, plaques. Proc Natl Acad Sci USA. 2004;101:11779–84. https://doi.org/10.1073/pnas.0403259101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Martel C, Li W, Fulp B, et al. Lymphatic vasculature mediates macrophage reverse cholesterol transport in mice. J Clin Invest. 2013;123:1571–9. https://doi.org/10.1172/JCI63685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Vuorio T, Nurmi H, Moulton K, et al. lymphatic vessel insufficiency in hypercholesterolemic mice alters lipoprotein levels and promotes atherogenesis. Arterioscler Thromb Vasc Biol. 2014;34:1162–70. https://doi.org/10.1161/ATVBAHA.114.302528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Haverich .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Haverich, A., Boyle, E.C. (2019). Incriminating Evidence for the Role of the Microvasculature in Atherosclerosis. In: Atherosclerosis Pathogenesis and Microvascular Dysfunction. Springer, Cham. https://doi.org/10.1007/978-3-030-20245-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20245-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20244-6

  • Online ISBN: 978-3-030-20245-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics