Resonant Tunneling Transport in Polar III-Nitride Heterostructures

  • Jimy Encomendero
  • Debdeep Jena
  • Huili Grace XingEmail author


During the last two decades, a considerable effort has been dedicated to engineer resonant tunneling transport within the family of III-Nitride semiconductors. At the heart of this initiative, lies the outstanding material properties that this revolutionary family of semiconductors offers for manufacturing high-power ultra-fast oscillators and terahertz quantum cascade lasers that operate at room temperature. Despite these efforts, it is only recently that room temperature resonant tunneling transport has been demonstrated within III-Nitride materials.

In this chapter we discuss various aspects of heterostructure design, epitaxial growth and device fabrication, which have led to the first unequivocal demonstration of robust resonant tunneling transport, and reliable room temperature negative differential conductance resulting in the generation of GHz oscillations in III-Nitride semiconductors. These advances allowed us to shed light into the physics of resonant tunneling transport in polar semiconductors which had remained hidden until now. This insight was obtained using a combined experimental and theoretical approach, leading to the discovery of new tunneling features, unique in polar RTDs. After identifying the intimate connection between the polarization fields and the resonant tunneling current, we harness this relationship by introducing a completely new approach to measure the magnitude of these internal polarization fields. Moreover, precise epitaxial growth at the single-monolayer level is employed to engineer resonant tunneling currents >200 kA/cm2 and demonstrate the first microwave oscillator driven by a GaN/AlN resonant tunneling diode.

The findings presented in this chapter pave the way for the realization of III-Nitride-based high-speed oscillators and quantum cascade lasers that operate at wavelengths that remain unreachable by other semiconductor materials.


Resonant tunneling Resonant tunneling diode Polar resonant tunneling diode Polarization fields Negative differential conductance Oscillator Resonant tunneling diode oscillator Molecular beam epitaxy RHEED Oscillations Resonant Tunneling Model Analytical tunneling current Peak voltage Resonant voltage Resonant current Peak current Polarization-induced Threshold voltage X-ray diffraction TEM image Spectral power density RTD Design Space Oscillation frequency Cryogenic Resonant lineshape 


  1. 1.
    R. Tsu, L. Esaki, Tunneling in a finite superlattice. Appl. Phys. Lett. 22, 562–564 (1973)CrossRefGoogle Scholar
  2. 2.
    L.L. Chang, L. Esaki, R. Tsu, Resonant tunneling in semiconductor double barriers. Appl. Phys. Lett. 24, 593–595 (1974).CrossRefGoogle Scholar
  3. 3.
    L.V. Iogansen, The possibility of resonance transmission of electrons in crystals through a system of barriers. JETP 18(1), 146 (1964)Google Scholar
  4. 4.
    L.V. Iogansen, Resonance tunneling of electrons in crystals. JETP 20(1), 180 (1965)Google Scholar
  5. 5.
    B. Sensale-Rodriguez, L. Liu, P. Fay, D. Jena, H. G. Xing, Power amplification at THz via plasma wave excitation in RTD-gated HEMTs. IEEE Trans. Terahertz Sci. Technol. 3, 200–206 (2013)CrossRefGoogle Scholar
  6. 6.
    H.O. Condori-Quispe, J.J. Encomendero-Risco, H.G. Xing, B. Sensale-Rodriguez, Terahertz amplification in RTD-gated HEMTs with a grating-gate wave coupling topology. Appl. Phys. Lett. 109, 063111 (2016)CrossRefGoogle Scholar
  7. 7.
    M. Tsuchiya, H. Sakaki, J. Yoshino, Room temperature observation of differential negative resistance in an AlAs/GaAs/AlAs resonant tunneling diode. Jpn. J. Appl. Phys. 24, L466 (1985)CrossRefGoogle Scholar
  8. 8.
    M. Asada, S. Suzuki, Room-temperature oscillation of resonant tunneling diodes close to 2 THz and their functions for various applications. J. Infrared Millimeter Terahertz Waves 37, 1185–1198 (2016)CrossRefGoogle Scholar
  9. 9.
    J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, A.Y. Cho, Quantum cascade laser. Science 264, 553–556 (1994)CrossRefGoogle Scholar
  10. 10.
    M.A. Belkin, F. Capasso, New frontiers in quantum cascade lasers: high performance room temperature terahertz sources. Phys. Scr. 90, 118002 (2015)CrossRefGoogle Scholar
  11. 11.
    E.R. Brown, J.R. Sderstrm, C.D. Parker, L.J. Mahoney, K.M. Molvar, T.C. McGill, Oscillations up to 712 GHz in InAs/AlSb resonant-tunneling diodes. Appl. Phys. Lett. 58, 2291–2293 (1991)CrossRefGoogle Scholar
  12. 12.
    A.N. Baranov, R. Teissier, Quantum cascade lasers in the InAs/AlSb material system. IEEE J. Sel. Top. Quantum Electron. 21, 85–96 (2015)CrossRefGoogle Scholar
  13. 13.
    B. Bird, M.J. Baker, Quantum cascade lasers in biomedical infrared imaging. Trends Biotechnol. 33, 557–558 (2015)CrossRefGoogle Scholar
  14. 14.
    H.-W. Hübers, R. Eichholz, S.G. Pavlov, H. Richter, High resolution terahertz spectroscopy with quantum cascade lasers. J. Infrared Millimeter, Terahertz Waves 34, 325–341 (2013)CrossRefGoogle Scholar
  15. 15.
    S. Bartalini, M.S. Vitiello, P. De Natale, Quantum cascade lasers: a versatile source for precise measurements in the mid/far-infrared range. Meas. Sci. Technol. 25, 012001 (2014)CrossRefGoogle Scholar
  16. 16.
    R. Izumi, S. Suzuki, M. Asada, 1.98 THz resonant- tunneling-diode oscillator with reduced conduction loss by thick antenna electrode, in 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (IEEE, Piscataway, 2017), pp. 1–2Google Scholar
  17. 17.
    H. Kanaya, T. Maekawa, S. Suzuki, M. Asada, Structure dependence of oscillation characteristics of resonant-tunneling-diode terahertz oscillators associated with intrinsic and extrinsic delay times. Jpn. J. Appl. Phys. 54, 094103 (2015)CrossRefGoogle Scholar
  18. 18.
    H. Kanaya, R. Sogabe, T. Maekawa, S. Suzuki, M. Asada, Fundamental oscillation up to 1.42 Thz in resonant tunneling diodes by optimized collector spacer thickness. J. Infrared Millimeter Terahertz Waves 35, 425–431 (2014)CrossRefGoogle Scholar
  19. 19.
    S. Kitagawa, M. Mizuno, S. Saito, K. Ogino, S. Suzuki, M. Asada, Frequency-tunable resonant-tunneling-diode terahertz oscillators applied to absorbance measurement. Jpn. J. Appl. Phys. 56, 058002 (2017)CrossRefGoogle Scholar
  20. 20.
    N. Oshima, K. Hashimoto, S. Suzuki, M Asada, Wireless data transmission of 34 Gbit/s at a 500-GHz range using resonant-tunnelling-diode terahertz oscillator. Electron. Lett. 52(1), 1897–1898 (2016)CrossRefGoogle Scholar
  21. 21.
    S. Watson, W. Zhang, J. Wang, A. Al-Khalidi, H. Cantu, J. Figueiredo, E. Wasige, A.E. Kelly, Resonant tunneling diode oscillators for optical communications. Proc. SPIE 10453, 10453–10453-6 (2017)Google Scholar
  22. 22.
    S. Kumar, C.W.I. Chan, Q. Hu, J.L. Reno, A 1.8-THz quantum cascade laser operating significantly above the temperature of ħωk B. Nat. Phys. 7, 166 (2010)Google Scholar
  23. 23.
    A. Kikuchi, R. Bannai, K. Kishino, AlGaN resonant tunneling diodes grown by RF-MBE. Phys. Status Solidi A 188, 187–190 (2001)CrossRefGoogle Scholar
  24. 24.
    A. Kikuchi, R. Bannai, K. Kishino, C.-M. Lee, J.-I. Chyi, AlN/GaN double-barrier resonant tunneling diodes grown by RF-plasma-assisted molecular-beam epitaxy. Appl. Phys. Lett. 81, 1729–1731 (2002)CrossRefGoogle Scholar
  25. 25.
    C.T. Foxon, S.V. Novikov, A.E. Belyaev, L.X. Zhao, O. Makarovsky, D.J. Walker, L. Eaves, R.I. Dykeman, S.V. Danylyuk, S.A. Vitusevich, M.J. Kappers, J.S. Barnard, C.J. Humphreys, Current-voltage instabilities in GaN/AlGaN resonant tunnelling structures. Phys. Status Solidi C 2003, 2389–2392 (2003)CrossRefGoogle Scholar
  26. 26.
    A.E Belyaev, O Makarovsky, D.J Walker, L Eaves, C.T Foxon, S.V Novikov, L.X Zhao, R.I Dykeman, S.V Dany- lyuk, S.A Vitusevich, M.J Kappers, J.S Barnard, C.J Humphreys, Resonance and current instabilities in AlN/GaN resonant tunnelling diodes. Phys. E 21, 752–755 (2004)CrossRefGoogle Scholar
  27. 27.
    M. Hermann, E. Monroy, A. Helman, B. Baur, M. Albrecht, B. Daudin, O. Ambacher, M. Stutzmann, M. Eickhoff, Vertical transport in group III-nitride heterostructures and application in AlN/GaN resonant tunneling diodes. Phys. Status Solidi C 1, 2210–2227 (2004)CrossRefGoogle Scholar
  28. 28.
    S. Golka, C. Pflugl, W. Schrenk, G. Strasser, C. Skierbiszewski, M. Siekacz, I. Grzegory, S. Porowski, Negative differential resistance in dislocation-free GaNAlGaN double-barrier diodes grown on bulk GaN. Appl. Phys. Lett. 88, 172106 (2006)CrossRefGoogle Scholar
  29. 29.
    A.M. Kurakin, S.A. Vitusevich, S.V. Danylyuk, A.V. Naumov, C.T. Foxon, S.V. Novikov, N. Klein, H. Luth, A.E. Belyaev, Capacitance characterization of AlN/GaN double-barrier resonant tunnelling diodes. Phys. Status Solidi C 3, 2265–2269 (2006)CrossRefGoogle Scholar
  30. 30.
    M.V. Petrychuk, A.E. Belyaev, A.M. Kurakin, S.V. Danylyuk, N. Klein, S.A. Vitusevich, Mechanisms of current formation in resonant tunneling AlNGaN heterostructures. Appl. Phys. Lett. 91, 222112 (2007)CrossRefGoogle Scholar
  31. 31.
    M. Boucherit, A. Soltani, E. Monroy, M. Rousseau, D. Deresmes, M. Berthe, C. Durand, J.-C. De Jaeger, Investigation of the negative differential resistance reproducibility in AlN/GaN double-barrier resonant tunnelling diodes. Appl. Phys. Lett. 99, 182109 (2011)CrossRefGoogle Scholar
  32. 32.
    M. Nagase, T. Tokizaki, Bistability characteristics of GaN/AlN resonant tunneling diodes caused by intersubband transition and electron accumulation in quantum well. IEEE Trans. Electron Devices 61, 1321–1326 (2014)CrossRefGoogle Scholar
  33. 33.
    M. Nagase, T. Takahashi, M. Shimizu, Investigating the bistability characteristics of GaN/AlN resonant tunneling diodes for ultrafast non-volatile memory. Jpn. J. Appl. Phys. 54, 034201 (2015)CrossRefGoogle Scholar
  34. 34.
    S. Sakr, Y. Kotsar, M. Tchernycheva, E. Warde, N. Isac, E. Monroy, F. H. Julien, Resonant tunneling transport in a GaN/AlN multiple-quantum-well structure. Appl. Phys. Express 5, 052203 (2012)CrossRefGoogle Scholar
  35. 35.
    C. Bayram, Z. Vashaei, M. Razeghi, AlN/GaN double-barrier resonant tunneling diodes grown by metal-organic chemical vapor deposition. Appl. Phys. Lett. 96, 042103 (2010)CrossRefGoogle Scholar
  36. 36.
    C. Bayram, Z. Vashaei, M. Razeghi, Reliability in room-temperature negative differential resistance characteristics of low-aluminum content AlGaN/GaN double-barrier resonant tunneling diodes. Appl. Phys. Lett. 97, 181109 (2010)CrossRefGoogle Scholar
  37. 37.
    R. Songmuang, G. Katsaros, E. Monroy, P. Spathis, C. Bougerol, M. Mongillo, S. De Franceschi, Quantum transport in GaN/AlN double-barrier heterostructure nanowires. Nano Lett. 10, 3545–3550 (2010)CrossRefGoogle Scholar
  38. 38.
    Y. Shao, S.D. Carnevale, A.T.M.G. Sarwar, R.C. Myers, W. Lu, Single nanowire AlN/GaN double barrier resonant tunneling diodes with bipolar tunneling at room and cryogenic temperatures. J. Vac. Sci. Technol. B 31, 06FA03 (2013)CrossRefGoogle Scholar
  39. 39.
    C. Bayram, Z. Vashaei, M. Razeghi, Room temperature negative differential resistance characteristics of polar III-nitride resonant tunneling diodes. Appl. Phys. Lett. 97, 092104 (2010)CrossRefGoogle Scholar
  40. 40.
    D. Li, L. Tang, C. Edmunds, J. Shao, G. Gardner, M.J. Manfra, O. Malis, Repeatable low-temperature negative-differential resistance from Al0.18Ga0.82N/GaN resonant tunneling diodes grown by molecular-beam epitaxy on free-standing GaN substrates. Appl. Phys. Lett. 100, 252105 (2012)CrossRefGoogle Scholar
  41. 41.
    D. Li, J. Shao, L. Tang, C. Edmunds, G. Gardner, M.J. Manfra, O. Malis, Temperature-dependence of negative differential resistance in GaN/AlGaN resonant tunneling structures. Semicond. Sci. Technol. 28, 074024 (2013)CrossRefGoogle Scholar
  42. 42.
    A. Grier, A. Valavanis, C. Edmunds, J. Shao, J.D. Cooper, G. Gardner, M.J. Manfra, O. Malis, D. Indjin, Z. Ikonic, P. Harrison, Coherent vertical electron transport and interface roughness effects in AlGaN/GaN intersubband devices. J. Appl. Phys. 118, 224308 (2015)CrossRefGoogle Scholar
  43. 43.
    J. Encomendero, F. Afroz Faria, S.M. Islam, V. Protasenko, S. Rouvimov, P. Fay, D. Jena, H.G. Xing, Repeatable room temperature negative differential conductance in GaN/AlN resonant tunneling diodes. arXiv preprint, arXiv:1606.08100 (2016)Google Scholar
  44. 44.
    T.A. Growden, D.F. Storm, W. Zhang, E.R. Brown, D.J. Meyer, P. Fakhimi, P.R. Berger, Highly repeatable room temperature negative differential resistance in AlN/GaN resonant tunneling diodes grown by molecular beam epitaxy. Appl. Phys. Lett. 109, 083504 (2016)CrossRefGoogle Scholar
  45. 45.
    J. Encomendero, F.A. Faria, S.M. Islam, V. Protasenko, S. Rouvimov, B. Sensale-Rodriguez, P. Fay, D. Jena, H.G. Xing, New tunneling features in polar III-Nitride resonant tunneling diodes. Phys. Rev. X 7, 041017 (2017)Google Scholar
  46. 46.
    T.A. Growden, W. Zhang, E.R. Brown, D.F. Storm, K. Hansen, P. Fakhimi, D. J. Meyer, P.R. Berger, 431 kA/cm2 peak tunneling current density in GaN/AlN resonant tunneling diodes. Appl. Phys. Lett. 112, 033508 (2018)CrossRefGoogle Scholar
  47. 47.
    J. Encomendero, R. Yan, A. Verma, S.M. Islam, V. Protasenko, S. Rouvimov, P. Fay, D. Jena, H.G. Xing, Room temperature microwave oscillations in GaN/AlN resonant tunneling diodes with peak current densities up to 220 kA/cm2. Appl. Phys. Lett. 112, 103101 (2018)CrossRefGoogle Scholar
  48. 48.
    H. Sakaki, M. Tanaka, J. Yoshino, One atomic layer heterointerface fluctuations in GaAs-AlAs quantum well structures and their suppression by insertion of smoothing period in molecular beam epitaxy. Jpn. J. Appl. Phys. 24, L417 (1985)CrossRefGoogle Scholar
  49. 49.
    C. Adelmann, J. Brault, G. Mula, B. Daudin, L. Lymperakis, J. Neugebauer, Gallium adsorption on (0001) GaN surfaces. Phys. Rev. B 67, 165419 (2003)CrossRefGoogle Scholar
  50. 50.
    C. Adelmann, J. Brault, D. Jalabert, P. Gentile, H. Mariette, G. Mula, B. Daudin, Dynamically stable gallium surface coverages during plasma-assisted molecular-beam epitaxy of (0001) GaN. J. Appl. Phys. 91, 9638 (2002)CrossRefGoogle Scholar
  51. 51.
    P.K. Kandaswamy, F. Guillot, E. Bellet-Amalric, E. Monroy, L. Nevou, M. Tchernycheva, A. Michon, F.H. Julien, E. Baumann, F.R. Giorgetta, D. Hofstetter, T. Remmele, M. Albrecht, S. Birner, L.S. Dang, GaN-AlN Short-period superlattices for intersubband optoelectronics: a systematic study of their epitaxial growth, design, and performance. J. Appl. Phys. 104, 093501 (2008)CrossRefGoogle Scholar
  52. 52.
    C.E.C. Wood, RED intensity oscillations during MBE of GaAs. Surf. Sci. 108, L441–L443 (1981)CrossRefGoogle Scholar
  53. 53.
    J.J. Harris, B.A. Joyce, P.J. Dobson, Oscillations in the surface structure of Sn-doped GaAs during growth by MBE. Surf. Sci. Lett. 103, L90–L96 (1981)Google Scholar
  54. 54.
    J.J. Harris, B.A. Joyce, P.J. Dobson, Comments on “RED intensity oscillations during MBE of GaAs”. Surf. Sci. 108, L444–L446 (1981)CrossRefGoogle Scholar
  55. 55.
    Z. Yang, L.K. Li, W.I. Wang, High-quality GaN and AlN grown by gas-source molecular beam epitaxy using ammonia as the nitrogen source. J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. Process. Meas. Phenom. 14, 2354–2356 (1996)CrossRefGoogle Scholar
  56. 56.
    B. Daudin, F. Widmann, Layer-by-layer growth of AlN and GaN by molecular beam epitaxy. J. Cryst. Growth 182, 1–5 (1997)CrossRefGoogle Scholar
  57. 57.
    J. Massies, N. Grandjean, Real-time control of the molecular beam epitaxy of nitrides. J. Cryst. Growth 201–202, 382–387 (1999)CrossRefGoogle Scholar
  58. 58.
    D. Bayerl, S.M. Islam, C.M. Jones, V. Protasenko, D. Jena, E. Kioupakis, Deep ultraviolet emission from ultra-thin GaN/AlN heterostructures. Appl. Phys. Lett. 109, 241102 (2016)CrossRefGoogle Scholar
  59. 59.
    S.M. Islam, V. Protasenko, K. Lee, S. Rouvimov, J. Verma, H.G. Xing, D. Jena, Deep-UV emission at 219 nm from ultra-thin MBE GaN/AlN quantum heterostructures. Appl. Phys. Lett. 111, 091104 (2017)CrossRefGoogle Scholar
  60. 60.
    F.A. Faria, J. Guo, P. Zhao, G. Li, P. Kumar Kandaswamy, M. Wistey, H.G. Xing, D. Jena, Ultra-low resistance ohmic contacts to GaN with high Si doping concentrations grown by molecular beam epitaxy. Appl. Phys. Lett. 101, 032109 (2012)CrossRefGoogle Scholar
  61. 61.
    J.S. Wu, C.Y. Chang, C.P. Lee, K.H. Chang, D.G. Liu, D.C. Liou, Resonant tunneling of electrons from quantized levels in the accumulation layer of double barrier heterostructures. Appl. Phys. Lett. 57, 2311 (1990)CrossRefGoogle Scholar
  62. 62.
    M. Buchanan, H.C. Liu, T.G. Powell, Z.R. Wasilewski, Magneto-resonant tunneling from a lightly doped contact region interacting with quasi-two-dimensional states in an accumulation layer. J. Appl. Phys. 68, 4313 (1990)CrossRefGoogle Scholar
  63. 63.
    J. Simon, V. Protasenko, C. Lian, H. Xing, D. Jena, Polarization-induced hole doping in wide–band-gap uniaxial semiconductor heterostructures. Science 327, 60–64 (2010)CrossRefGoogle Scholar
  64. 64.
    M. Asif Khan, J.N. Kuznia, J.M. Van Hove, N. Pan, J. Carter, Observation of a two dimensional electron gas in low pressure metal organic chemical vapor deposited GaNAl/GaN hetero junctions. Appl. Phys. Lett. 60, 3027–3029 (1992)CrossRefGoogle Scholar
  65. 65.
    J. Simon, Z. Zhang, K. Goodman, H. Xing, T. Kosel, P. Fay, D. Jena, Polarization-induced zener tunnel junctions in wide–band-gap heterostructures. Phys. Rev. Lett. 103, 026801 (2009)CrossRefGoogle Scholar
  66. 66.
    I.H. Tan, G.L. Snider, L.D. Chang, E.L. Hu, A Self-consistent solution of Schrödinger–Poisson equations using a nonuniform mesh. J. Appl. Phys. 68, 4071 (1990)CrossRefGoogle Scholar
  67. 67.
    I.H. Campbell, M.D. Joswick, D.L. Smith, R.H. Miles, Observation of piezoelectric effects in strained resonant tunneling structures grown on (111)B GaAs. Appl. Phys. Lett. 66, 988 (1995)CrossRefGoogle Scholar
  68. 68.
    J.M. Hernández, I. Izpura, E. Calleja, E. Muoz, Piezoelectric induced current asymmetry in [111] InGaAs/InAlAs resonant tunneling diodes for microwave mixing. Appl. Phys. Lett. 63, 773 (1993)CrossRefGoogle Scholar
  69. 69.
    A. Douglas Stone, P.A. Lee, Effect of inelastic processes on resonant tunneling in one dimension. Phys. Rev. Lett. 54, 1196–1199 (1985)CrossRefGoogle Scholar
  70. 70.
    P.J. Price, Resonant tunneling properties of heterostructures. Superlattice. Microst. 2, 593–596 (1986)CrossRefGoogle Scholar
  71. 71.
    M. Jonson, A. Grincwajg, Effect of inelastic scattering on resonant and sequential tunneling in double barrier heterostructures. Appl. Phys. Lett. 51, 1729–1731 (1987)CrossRefGoogle Scholar
  72. 72.
    R.A. Kiehl, T.C.L. Gerhard Sollner, High Speed Heterostructure Devices (Academic Press, London, 1994)Google Scholar
  73. 73.
    D.D. Coon, H.C. Liu, Frequency limit of double barrier resonant tunneling oscillators. Appl. Phys. Lett. 49, 94 (1986)CrossRefGoogle Scholar
  74. 74.
    O. Ambacher, B. Foutz, J. Smart, J.R. Shealy, N.G. Weimann, K. Chu, M. Murphy, A.J. Sierakowski, W.J. Schaff, L.F. Eastman, R. Dimitrov, A. Mitchell, M. Stutzmann, Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures. J. Appl. Phys. 87, 334 (2000)CrossRefGoogle Scholar
  75. 75.
    K. Jeganathan, T. Ide, M. Shimizu, H. Okumura, Two-dimensional electron gases induced by polarization charges in AlN/GaN heterostructure grown by plasma-assisted molecular-beam epitaxy. J. Appl. Phys. 94, 3260 (2003)CrossRefGoogle Scholar
  76. 76.
    T.C.L.G. Sollner, P.E. Tannenwald, D.D. Peck, W.D. Goodhue, Quantum well oscillators. Appl. Phys. Lett. 45, 1319–1321 (1984)CrossRefGoogle Scholar
  77. 77.
    L. Wang, J.M.L. Figueiredo, C.N. Ironside, E. Wasige, DC characterization of tunnel diodes under stable non-oscillatory circuit conditions. IEEE Trans. Electron Devices 58, 343–347 (2011)CrossRefGoogle Scholar
  78. 78.
    M. Feiginov, C. Sydlo, O. Cojocari, P. Meissner, Operation of resonant-tunnelling-diode oscillators beyond tunnel-lifetime limit at 564 GHz. EPL 97, 58006 (2012)CrossRefGoogle Scholar
  79. 79.
    E.R. Brown, T.C.L.G. Sollner, W.D. Goodhue, B.J. Clifton, P.E. Tannenwald, VIB-1 millimeter-band oscillations in a resonant-tunneling device. IEEE Trans. Electron Devices 33, 1864–1864 (1986)CrossRefGoogle Scholar
  80. 80.
    E.R. Brown, T.C.L.G. Sollner, W.D. Goodhue, C.D. Parker, Millimeter-band oscillations based on resonant tunneling in a double barrier diode at room temperature. Appl. Phys. Lett. 50, 83–85 (1987)CrossRefGoogle Scholar
  81. 81.
    E.R. Brown, W.D. Goodhue, T.C.L.G. Sollner, Fundamental oscillations up to 200 GHz in resonant tunneling diodes and new estimates of their maximum oscillation frequency from stationary state tunneling theory. J. Appl. Phys. 64, 1519–1529 (1988)CrossRefGoogle Scholar
  82. 82.
    E.R. Brown, T.C.L.G. Sollner, C.D. Parker, W.D. Goodhue, C.L. Chen, Oscillations up to 420 GHz in GaAs/AlAs resonant tunneling diodes. Appl. Phys. Lett. 55, 1777–1779 (1989)CrossRefGoogle Scholar
  83. 83.
    T.C.L.G. Sollner, E.R. Brown, W.D. Goodhue, H.Q. Le, Observation of millimeter-wave oscillations from resonant tunneling diodes and some theoretical considerations of ultimate frequency limits. Appl. Phys. Lett. 50, 332–334 (1987)CrossRefGoogle Scholar
  84. 84.
    J.N. Schulman, H.J. De Los Santos, D.H. Chow, Physics-based RTD current–voltage equation. IEEE Electron Device Lett. 17, 220–222 (1996)CrossRefGoogle Scholar
  85. 85.
    M. Reddy, S.C. Martin, A.C. Molnar, R.E. Muller, R.P. Smith, P.H. Siegel, M.J. Mondry, M.J.W. Rodwell, H. Kroemer, S. J. Allen, Monolithic Schottky-collector resonant tunnel diode oscillator arrays to 650 Ghz. IEEE Electron Device Lett. 18, 218–221 (1997)CrossRefGoogle Scholar
  86. 86.
    N. Orihashi, S. Hattori, M. Asada, Millimeter and submillimeter oscillator using resonant tunneling diode and slot antenna with a novel RF short structure, in Conference Digest of the 2004 Joint 29th International Conference on Infrared and Millimeter Waves, and 12th International Conference on Terahertz Electronics (IEEE, Piscataway, 2004), pp. 121–122Google Scholar
  87. 87.
    N. Orihashi, S. Hattori, S. Suzuki, M. Asada, Experimental and theoretical characteristics of sub-terahertz and terahertz oscillations of resonant tunneling diodes integrated with slot antennas. Jpn. J. Appl. Phys. 44, 7809 (2005)CrossRefGoogle Scholar
  88. 88.
    S. Suzuki, A. Teranishi, K. Hinata, M. Asada, H. Sugiyama, H. Yokoyama, Fundamental oscillation up to 831 GHz in GaInAs/AlAs resonant tunneling diode, in 2009 IEEE International Conference on Indium Phosphide Related Materials (2009), pp. 192–195Google Scholar
  89. 89.
    S. Suzuki, M. Asada, A. Teranishi, H. Sugiyama, H. Yokoyama, Fundamental oscillation of resonant tunneling diodes above 1 Thz at room temperature. Appl. Phys. Lett. 97, 242102 (2010)CrossRefGoogle Scholar
  90. 90.
    M. Feiginov, C. Sydlo, O. Cojocari, P. Meissner, Resonant-tunnelling-diode oscillators operating at frequencies above 1.1 THz. Appl. Phys. Lett. 99, 233506 (2011)CrossRefGoogle Scholar
  91. 91.
    M. Feiginov, H. Kanaya, S. Suzuki, M. Asada, Operation of resonant-tunneling diodes with strong back injection from the collector at frequencies up to 1.46 THz. Appl. Phys. Lett. 104, 2243509 (2014)CrossRefGoogle Scholar
  92. 92.
    T. Maekawa, H. Kanaya, S. Suzuki, M. Asada, Oscillation up to 1.92 Thz in resonant tunneling diode by reduced conduction loss. Appl. Phys. Express 9, 024101 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Jimy Encomendero
    • 1
  • Debdeep Jena
    • 1
  • Huili Grace Xing
    • 1
    Email author
  1. 1.Cornell UniversityIthacaUSA

Personalised recommendations