Advertisement

Numerical Simulation of Distributed Electromagnetic and Plasma Wave Effect Devices

  • Shubhendu BhardwajEmail author
  • John VolakisEmail author
Chapter

Abstract

In this chapter, authors explore time-efficient computational tools geared toward modeling of semiconductor devices at terahertz frequencies. At these frequencies, the time-scale of electron interactions (such as collisions and relaxations) is larger than the time-scale of applied signal’s oscillation cycle, and therefore device response could be slower than the change in applied bias/fields. For such scenarios, electronic motion should be consistently solved with the electrodynamic field calculations, as devices’ response from prior cycle may affect the next cycle. We adopt a “global-full-wave” approach that considers 1D hydrodynamic equations for the electronic modeling and 2D Maxwell’s equation solution for the modeling of terahertz device operation. Specifically, we use finite difference time domain-based scheme for numerically solving the Maxwell’s equations, which are then integrated with upwind-type numerical solution of hydrodynamic equations, via coupling of current and field terms in the solution time steps. In order to increase the efficiency of the solution, approaches using unconditionally stable FDTD methods, such as alternating directional implicit (ADI) FDTD method and iterative ADI FDTD method, are also investigated. The time and accuracy performances of these algorithms are benchmarked against the traditional FDTD (Yee’s staggered grid)-based algorithms.

The developed tools are applied for the phenomenological understanding and the performance prediction of three devices within this work. Firstly, authors investigate the plasma wave instability (also known as Shur’s instability) in short channel high electron mobility transistor (HEMT) based on InGaAs material system. Secondly, possibility of plasmonic growth is explored in HEMTs which are supported by resonant-tunneling diode at their gate for providing a negative differential media. Finally, phenomenological demonstrations (via simulations) are shown for dual-mode plasmonic propagations in bilayer (double 2D electron gas) channels and gated bilayers in GaN material system.

Keywords

Plasma wave Plasmonic oscillations 2D electron gas Terahertz HEMTs Gan/AlGaN Maxwell’s equations Hydrodynamic equations Electron transport Finite difference time domain Resonant tunneling Instability Discretization Multiscale Multiphysics Electrodynamics Plasmonic amplification 

References

  1. 1.
    M. Dyakonov, M. Shur, Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid. IEEE Trans Elec Devices 43(3), 380–387 (1996)CrossRefGoogle Scholar
  2. 2.
    W. Knap, S. Nadar, H. Videlier, S. Boubanga-Tombet, D. Coquillat, N. Dyakonova, F. Teppe, K. Karpierz, J. Usakowski, M. Sakowicz, D. Seliuta, Kasalynas, G. Valuis, S. Monfray, and T. Skotnicki, Field effect transistors for fast terahertz detection and imaging, in 18-th International Conference on Microwaves, Radar and Wireless Communications, 2010, p. 1–3Google Scholar
  3. 3.
    J.-Q. Lu, M.S. Shur, Terahertz detection by high-electron-mobility transistor: Enhancement by drain bias. Appl. Phys. Lett. 78(17), 2587–2588 (2001).  https://doi.org/10.1063/1.1367289 CrossRefGoogle Scholar
  4. 4.
    J.-Q. Lu, M.S. Shur, J.L. Hesler, L. Sun, R. Weikle, Terahertz detec- tor utilizing two-dimensional electronic fluid. IEEE Elect Device Lett 19(10), 373–375 (Oct 1998)CrossRefGoogle Scholar
  5. 5.
    W. Knap, V. Kachorovskii, Y. Deng, S. Rumyantsev, J.-Q. LU, R. Gaska, M.S. Shur, G. Simin, X. Hu, M.A. Khan, C.A. Saylor, L.C. Brunel, Nonresonant detection of terahertz radiation in field effect transistors. J Appl Phys 91(11), 9346–9353 (2002).  https://doi.org/10.1063/1.1468257 CrossRefGoogle Scholar
  6. 6.
    W. Knap, Y. Deng, S. Rumyantsev, M.S. Shur, Resonant detection of subterahertz and terahertz radiation by plasma waves in submicron field-effect transistors. Appl. Phys. Lett. 81(24), 4637 (2002)CrossRefGoogle Scholar
  7. 7.
    W. Knap, Y. Deng, S. Rumyantsev, J.-Q. Lu¨, M. Shur, C. Saylor, L. Brunel, Resonant detection of subterahertz radiation by plasma waves in a submicron field-effect transistor. Appl. Phys. Lett. 80(18), 3433–3435 (2002)CrossRefGoogle Scholar
  8. 8.
    A. El Fatimy, F. Teppe, N. Dyakonova, W. Knap, D. Seliuta, G. Valusis, Shchepetov, Y. Roelens, S. Bollaert, A. Cappy, S. Rumyantsev, Reso- nant and voltage-tunable terahertz detection in InGaAs/InP nanometer Tran- sistors. Appl. Phys. Lett. 89(13), 131 926–131 926–3 (2006)CrossRefGoogle Scholar
  9. 9.
    W. Knap, F. Teppe, Y. Meziani, N. Dyakonova, J. Lusakowski, F. Boeuf, T. Skotnicki, D. Maude, S. Rumyantsev, M. Shur, Plasma wave detec- tion of sub-terahertz and terahertz radiation by silicon field-effect transistors. Appl. Phys. Lett. 85(4), 675–677 (2004)CrossRefGoogle Scholar
  10. 10.
    R. Tauk, F. Teppe, S. Boubanga, D. Coquillat, W. Knap, Y. Meziani, C. Gallon, F. Boeuf, T. Skotnicki, C. Fenouillet-Beranger, et al., Plasma wave detection of terahertz radiation by silicon field effects transistors: Responsivity and noise equivalent power. Appl. Phys. Lett. 89(25), 253511 (2006)CrossRefGoogle Scholar
  11. 11.
    S. Allen Jr., D. Tsui, R. Logan, Observation of the two-dimensional plasmon in silicon inversion layers. Phys. Rev. Lett. 38(17), 980 (1977)CrossRefGoogle Scholar
  12. 12.
    F. Stern, Polarizability of a two-dimensional electron gas. Phys. Rev. Lett. 18(14), 546 (1967)CrossRefGoogle Scholar
  13. 13.
    A. Eguiluz, T. Lee, J. Quinn, K. Chiu, Interface excitations in metal-insulator-semiconductor structures. Phys. Rev. B 11(12), 4989 (1975)CrossRefGoogle Scholar
  14. 14.
    M. Ali Khorrami, S. El-Ghazaly, S.-Q. Yu, H. Naseem, Terahertz plasmon amplification using two-dimensional electron-gas layers. J. Appl. Phys. 111(9), 094501 (2012)CrossRefGoogle Scholar
  15. 15.
    D. Mari, Accurate numerical steady-state and transient one-dimensional solutions of semiconductor devices,” Ph.D. dissertation (California Institute of Technology, 1968)Google Scholar
  16. 16.
    R.O. Grondin, S.M. El-Ghazaly, S. Goodnick, A review of global modeling of charge transport in semiconductors and full-wave electromagnetics. IEEE Trans Micr Theory Tech 47(6), 817–829 (1999)CrossRefGoogle Scholar
  17. 17.
    J. Mateos, T. Gonzalez, Plasma enhanced terahertz rectification and noise in InGaAs HEMTs. IEEE Trans Terahertz Sci Technol 2(5), 562–569 (2012)CrossRefGoogle Scholar
  18. 18.
    D. Vasileska, S. Goodnick, G. Klimeck, Computational Electronics, Semiclassical and Quantum Device Modeling and Simulation (CRC Press, Boca Raton, 2010)Google Scholar
  19. 19.
    U. Mishra, J. Singh, Semiconductor Device Physics and Design, 1st edn. (Springer, Netherlands, 2008)Google Scholar
  20. 20.
    A. Taflov, S.C. Hagness, Computational Electrodynamics, the Finite Difference Time Domain Method (Artech House, Norwood, 2005)Google Scholar
  21. 21.
    A.V. Muravjov, D.B. Veksler, V.V. Popov, O.V. Polischuk, N. Pala, X. Hu, R. Gaska, H. Saxena, R.E. Peale, M.S. Shur, Temperature dependence of plasmonic terahertz absorption in grating-gate gallium-nitride transistor structures. Appl. Phys. Lett. 96(4), 042105 (2010)CrossRefGoogle Scholar
  22. 22.
    S. Bhardwaj, B. Sensale-Rodriguez, H.G. Xing, S. Rajan, J.L. Volakis, Resonant tunneling assisted propagation and amplification of plasmons in high electron mobility transistors. J. Appl. Phys. 119(1), 013102 (2016)CrossRefGoogle Scholar
  23. 23.
    M.A. Alsunaidi, S.S. Imtiaz, S.M. El-Ghazaly, Electromagnetic wave effects on microwave transistors using a full-wave time-domain model. IEEE Trans Micro Theory Tech 44(6), 799–808 (1996)CrossRefGoogle Scholar
  24. 24.
    S. Bhardwaj, N.K. Nahar, S. Rajan, J.L. Volakis, Numerical analysis of terahertz emissions from an ungated hemt using full-wave hydrodynamic model. IEEE Trans Electr Devices 63(3), 990–996 (2016)CrossRefGoogle Scholar
  25. 25.
    M. Dyakonov, M.S. Shur, Current instability and plasma waves generation in ungated two-dimensional electron layers. Appl. Phys. Lett. 87(11), 111501 (2005)CrossRefGoogle Scholar
  26. 26.
    M. Dyakonov, M. Shur, Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid. IEEE Trans Electr Devices 43(3), 380–387 (1996)CrossRefGoogle Scholar
  27. 27.
    M. Dyakonov, M. Shur, Plasma wave electronics: Novel terahertz-devices using two-dimensional electron fluid. IEEE Trans Electr Devices 43(10), 1640–1645 (1996)CrossRefGoogle Scholar
  28. 28.
    M. Dyakonov, M. Shur, Shallow water analogy for a ballistic field effect transistor: New mechanism of plasma wave generation by dc current. Phys. Rev. Lett. 71, 2465–2468 (1993).  https://doi.org/10.1103/PhysRevLett.71.2465 CrossRefGoogle Scholar
  29. 29.
    T. Otsuji, M. Hanabe, T. Nishimura, E. Sano, A grating bicoupled plasmawave photo mixer with resonant-cavity enhanced structure. Opt. Express 14(11), 4815–4825 (2006)CrossRefGoogle Scholar
  30. 30.
    T. Akazaki, K. Arai, T. Enoki, Y. Ishii, Improved InAlAs/InGaAs HEMT characteristics by inserting an InAs layer into the InGaAs channel. IEEE Electr Device Lett 13(6), 325–327 (1992)CrossRefGoogle Scholar
  31. 31.
    M. Asada, S. Suzuki, N. Kishimoto, Resonant tunneling diodes for sub-terahertz and terahertz oscillators. Jpn. J. Appl. Phys. 47(6R), 4375 (2008)CrossRefGoogle Scholar
  32. 32.
    Y. Koyama, R. Sekiguchi, T. Ouchi, Oscillations up to 1.40 thz from resonant-tunneling-diode-based oscillators with integrated patch antennas. Appl. Phys. Express 6(6), 064102 (2013)CrossRefGoogle Scholar
  33. 33.
    K. Blotekjaer, Transport equations for electrons in two-valley semiconductors. IEEE Trans Electr Devices 17(1), 38–47 (1970)CrossRefGoogle Scholar
  34. 34.
    C. Caglayan, G.C. Trichopoulos, K. Sertel, Non-contact probes for on-wafer characterization of sub-millimeter-wave devices and integrated circuits. IEEE Trans Micr Theory Tech 62(11), 2791–2801 (2014)CrossRefGoogle Scholar
  35. 35.
    P. Burke, I. Spielman, J. Eisenstein, L. Pfeier, K. West, High frequency conductivity of the high-mobility two-dimensional electron gas. Appl. Phys. Lett. 76(6), 745–747 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Florida International UniversityMiamiUSA

Personalised recommendations