Advertisement

Plasma-Wave Propagation in GaN and Its Applications

  • Hugo O. Condori Quispe
  • Berardi Sensale-RodriguezEmail author
  • Patrick FayEmail author
Chapter

Abstract

Electron plasma waves are oscillations of electron density in space and time. They have attracted significant attention for the development of terahertz detectors and sources. Electron plasma waves are generated when electrons in the channel of a transistor are not able to follow high-frequency oscillations and lag behind. This introduces a delay or phase shift manifested as an inductive behavior, the so-called kinetic inductance. This electron inertia is essential for the propagation of 2D plasmonic waves. In this chapter, we discuss the physical origin of these plasma waves and describe the latest experimental results reported in GaN-based devices. In addition, we outline the prospective applications in the context of a terahertz power amplifiers. We conclude with an outlook of the future directions in this emerging field.

Keywords

Terahertz radiation Microwaves Plasmons Gallium nitride Resonant tunneling High-electron-mobility transistor Two dimensional electron gas High mobility Detection Amplification Electromagnetic coupling Distributed model Hydrodynamic modelling Terahertz time domain spectroscopy Absorption spectroscopy 

References

  1. 1.
    G.C. Dyer, G.R. Aizin, S.J. Allen, A.D. Grine, D. Bethke, J.L. Reno, E.A. Shaner, Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals. Nat. Photonics 7(11), 925 (2013)CrossRefGoogle Scholar
  2. 2.
    S.J. Allen Jr., D.C. Tsui, R.A. Logan, Observation of the two-dimensional plasmon in silicon inversion layers. Phys. Rev. Lett. 38(17), 980 (1977)CrossRefGoogle Scholar
  3. 3.
    T. Otsuji, M. Shur, Terahertz plasmonics: good results and great expectations. IEEE Microw. Mag. 15(7), 43–50 (2014)CrossRefGoogle Scholar
  4. 4.
    G.R. Aizin, G.C. Dyer, Transmission line theory of collective plasma excitations in periodic two-dimensional electron systems: finite plasmonic crystals and Tamm states. Phys. Rev. B 86(23), 235316 (2012)CrossRefGoogle Scholar
  5. 5.
    S. Preu, S. Kim, R. Verma, P.G. Burke, M.S. Sherwin, A.C. Gossard, An improved model for non-resonant terahertz detection in field-effect transistors. J. Appl. Phys. 111(2), 024502 (2012)CrossRefGoogle Scholar
  6. 6.
    G.C. Dyer, G.R. Aizin, S. Preu, N.Q. Vinh, S.J. Allen, J.L. Reno, E.A. Shaner, Inducing an incipient terahertz finite plasmonic crystal in coupled two dimensional plasmonic cavities. Phys. Rev. Lett. 109(12), 126803 (2012)CrossRefGoogle Scholar
  7. 7.
    M. Dyakonov, M. Shur, Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by dc current. Phys. Rev. Lett. 71(15), 2465 (1993)CrossRefGoogle Scholar
  8. 8.
    P.J. Burke, I.B. Spielman, J.P. Eisenstein, L.N. Pfeiffer, K.W. West, High frequency conductivity of the high-mobility two-dimensional electron gas. Appl. Phys. Lett. 76(6), 745–747 (2000)CrossRefGoogle Scholar
  9. 9.
    T. Otsuji, S.B. Tombet, A. Satou, H. Fukidome, M. Suemitsu, E. Sano, V. Ryzhii, Graphene-based devices in terahertz science and technology. J. Phys. D. Appl. Phys. 45(30), 303001 (2012)CrossRefGoogle Scholar
  10. 10.
    L. Vicarelli, M.S. Vitiello, D. Coquillat, A. Lombardo, A.C. Ferrari, W. Knap, A. Tredicucci, Graphene field-effect transistors as room-temperature terahertz detectors. Nat. Mater. 11(10), 865 (2012)CrossRefGoogle Scholar
  11. 11.
    H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, F. Xia, Tunable infrared plasmonic devices using graphene/insulator stacks. Nat. Nanotechnol. 7(5), 330 (2012)CrossRefGoogle Scholar
  12. 12.
    A.V. Muravjov, D.B. Veksler, V.V. Popov, O.V. Polischuk, N. Pala, X. Hu, M.S. Shur, Temperature dependence of plasmonic terahertz absorption in grating-gate gallium-nitride transistor structures. Appl. Phys. Lett. 96(4), 042105 (2010)CrossRefGoogle Scholar
  13. 13.
    H.O. Condori Quispe, A. Chanana, J. Encomendero, M. Zhu, N. Trometer, A. Nahata, B. Sensale-Rodriguez, Comparison of unit cell coupling for grating-gate and high electron mobility transistor array THz resonant absorbers. J. Appl. Phys. 124(9), 093101 (2018)CrossRefGoogle Scholar
  14. 14.
    M.S. Shur, V. Ryzhii, Plasma wave electronics. Int J High Speed Elect Sys 13(02), 575–600 (2003)CrossRefGoogle Scholar
  15. 15.
    D. Veksler, F. Teppe, A.P. Dmitriev, V.Y. Kachorovskii, W. Knap, M.S. Shur, Detection of terahertz radiation in gated two-dimensional structures governed by dc current. Phys. Rev. B 73(12), 125328 (2006)CrossRefGoogle Scholar
  16. 16.
    M.I. Dyakonov, M.S. Shur, Choking of electron flow: a mechanism of current saturation in field-effect transistors. Phys. Rev. B 51(20), 14341 (1995)CrossRefGoogle Scholar
  17. 17.
    M. Dyakonov, M.S. Shur, Plasma wave electronics for terahertz applications, in Terahertz sources and systems, (Springer, Dordrecht, 2001), pp. 187–207CrossRefGoogle Scholar
  18. 18.
    M. Dyakonov, M. Shur, Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid. IEEE Trans Electr Devices 43(3), 380–387 (1996)CrossRefGoogle Scholar
  19. 19.
    B. Sensale-Rodriguez, P. Fay, L. Liu, D. Jena, H.G. Xing, Enhanced Terahertz detection in resonant tunnel diode-gated HEMTs. ECS Trans. 49(1), 93–102 (2012)CrossRefGoogle Scholar
  20. 20.
    V. Ryzhii, I. Khmyrova, M. Shur, Resonant detection and frequency multiplication of terahertz radiation utilizing plasma waves in resonant-tunneling transistors. J. Appl. Phys. 88(5), 2868–2871 (2000)CrossRefGoogle Scholar
  21. 21.
    V. Ryzhii, M. Shur, Plasma instability and nonlinear terahertz oscillations in resonant-tunneling structures. Jpn. J. Appl. Phys. 40(2R), 546 (2001)CrossRefGoogle Scholar
  22. 22.
    B. Sensale-Rodriguez, L. Liu, P. Fay, D. Jena, H.G. Xing, Power amplification at THz via plasma wave excitation in RTD-gated HEMTs. IEEE Trans Terahertz Sci Technol 3(2), 200–206 (2013)CrossRefGoogle Scholar
  23. 23.
    H.O. Condori Quispe, J.J. Encomendero-Risco, H.G. Xing, B. Sensale-Rodriguez, Terahertz amplification in RTD-gated HEMTs with a grating-gate wave coupling topology. Appl. Phys. Lett. 109(6), 063111 (2016)CrossRefGoogle Scholar
  24. 24.
    Y. Karisan, C. Caglayan, G.C. Trichopoulos, K. Sertel, Lumped-element equivalent-circuit modeling of millimeter-wave HEMT parasitics through full-wave electromagnetic analysis. IEEE Trans Microwave Theory Techniques 64(5), 1419–1430 (2016)CrossRefGoogle Scholar
  25. 25.
    Y. Zhao, W. Chen, W. Li, M. Zhu, Y. Yue, B. Song, J. Encomendero, B. Sensale-Rodriquez, H. Xing, P. Fay, Direct electrical observation of plasma wave-related effects in GaN-based two-dimensional electron gases. Appl. Phys. Lett. 105, 173508 (2014)CrossRefGoogle Scholar
  26. 26.
    G.C. Dyer, J.D. Crossno, G.R. Aizin, E.A. Shaner, M.C. Wanke, J.L. Reno, S.J. Allen, A plasmonic terahertz detector with a monolithic hot electron bolometer. J. Phys. Condens. Matter 21(19), 195803 (2009)CrossRefGoogle Scholar
  27. 27.
    T. Otsuji, M. Hanabe, T. Nishimura, E. Sano, A grating-bicoupled plasma-wave photomixer with resonant-cavity enhanced structure. Opt. Express 14(11), 4815–4825 (2006)CrossRefGoogle Scholar
  28. 28.
    S.A. Mikhailov, Plasma instability and amplification of electromagnetic waves in low-dimensional electron systems. Phys. Rev. B 58(3), 1517 (1998)CrossRefGoogle Scholar
  29. 29.
    V.V. Popov, D.V. Fateev, T. Otsuji, Y.M. Meziani, D. Coquillat, W. Knap, Plasmonic terahertz detection by a double-grating-gate field-effect transistor structure with an asymmetric unit cell. Appl. Phys. Lett. 99(24), 243504 (2011)CrossRefGoogle Scholar
  30. 30.
    V.V. Popov, Plasmon excitation and plasmonic detection of terahertz radiation in the grating-gate field-effect-transistor structures. J Infrared Millimeter Terahertz Waves 32(10), 1178 (2011)CrossRefGoogle Scholar
  31. 31.
    G.C. Dyer, N.Q. Vinh, S.J. Allen, G.R. Aizin, J. Mikalopas, J.L. Reno, E.A. Shaner, A terahertz plasmon cavity detector. Appl. Phys. Lett. 97(19), 193507 (2010)CrossRefGoogle Scholar
  32. 32.
    W.J. Stillman, M.S. Shur, Closing the gap: plasma wave electronic terahertz detectors. J. Nanoelectron. Optoelectron. 2(3), 209–221 (2007)CrossRefGoogle Scholar
  33. 33.
    G.C. Dyer, G.R. Aizin, J.L. Reno, E.A. Shaner, S.J. Allen, Novel tunable millimeter-wave grating-gated plasmonic detectors. IEEE J Selected Topics Quant Electr 17(1), 85–91 (2011)CrossRefGoogle Scholar
  34. 34.
    T. Otsuji, Trends in the research of modern terahertz detectors: plasmon detectors. IEEE Trans Terahertz Sci Technol 5(6), 1110–1120 (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringThe University of UtahSalt Lake CityUSA
  2. 2.University of Notre DameNotre DameUSA

Personalised recommendations