Advertisement

Linearity Aspects of High Power Amplification in GaN Transistors

  • Samuel James Bader
  • Keisuke ShinoharaEmail author
  • Alyosha Molnar
Chapter

Abstract

Linearity (and its absence) is a major design constraint in practical high-frequency communication circuits, impacting both transmitter and receiver circuits. This chapter will introduce the general features of non-linearity and how it impacts circuit design, then dive into the origins of non-linearity in GaN devices specifically, detailing how it is modelled in the literature, and conclude with a discussion of designs at both the device level and circuit level which can help linearize systems based on GaN PAs.

Keywords

Velocity saturation Trapping Self-heating Large-signal modelling Compact modelling Gate capacitance gm linearity Polarization-induced channel engineering gm superposition n+GaN source ledge Regrown n+GaN ohmic contact Fin-shaped field effect transistor Buried dual gate field effect transistor Super-lattice castellated field effect transistor Field plate Feedback linearization Counter-distortion Pre-distortion 

References

  1. 1.
    T.H. Lee, The Design of Radio-Frequency Integrated Circuits, 2nd edn. (Cambridge University Press, Cambridge, 2004)Google Scholar
  2. 2.
    A. Katz, Linearization: reducing distortion in power amplifiers. IEEE Microw. Mag. 2(4), 37–49 (2001)CrossRefGoogle Scholar
  3. 3.
    S. Birner, T. Zibold, T. Andlauer, T. Kubis, M. Sabathil, A. Trellakis, P. Vogl, Nextnano: general purpose 3-D simulations. IEEE Trans. Electron Dev. 54(9), 2137–2142 (2007)CrossRefGoogle Scholar
  4. 4.
    S. Khandelwal, N. Goyal, T.A. Fjeldly, A physics-based analytical model for 2DEG charge density in AlGaN/GaN HEMT devices. IEEE Trans. Electron Dev. 58(10), 3622–3625 (2011)CrossRefGoogle Scholar
  5. 5.
    S. Syed, J.B. Heroux, Y.J. Wang, M.J. Manfra, R.J. Molnar, H.L. Stormer, Nonparabolicity of the conduction band of wurtzite GaN. Appl. Phys. Lett. 83(22), 4553–4555 (2003)CrossRefGoogle Scholar
  6. 6.
    B.K. Ridley, P. Tripathi, Polar-optical-phonon and electron-electron scattering in large-bandgap semiconductors. J. Phys. Condens. Matter 10, 6717–6726 (1998)CrossRefGoogle Scholar
  7. 7.
    T. Fang, R. Wang, H. Xing, S. Rajan, D. Jena, Effect of optical phonon scattering on the performance of GaN transistors. IEEE Electron Dev. Lett. 33(5), 709–711 (2012)CrossRefGoogle Scholar
  8. 8.
    S. Bajaj, O.F. Shoron, P.S. Park, S. Krishnamoorthy, F. Akyol, T.H. Hung, S. Reza, E.M. Chumbes, J. Khurgin, S. Rajan, Density-dependent electron transport and precise modeling of GaN high electron mobility transistors. Appl. Phys. Lett. 107(15), 1–5 (2015)CrossRefGoogle Scholar
  9. 9.
    K. Shinohara, D. Regan, A. Corrion, D. Brown, S. Burnham, P.J. Willadsen, I. Alvarado-Rodriguez, M. Cunningham, C. Butler, A. Schmitz, S. Kim, B. Holden, D. Chang, V. Lee, A. Ohoka, P.M. Asbeck, M. Micovic, Deeply-scaled self-aligned-gate GaN DH-HEMTs with ultrahigh cutoff frequency, in Technical Digest - International Electron Devices Meeting, IEDM, vol. 2(D) (2011), pp. 453–456Google Scholar
  10. 10.
    T. Palacios, S. Rajan, A. Chakraborty, S. Heikman, S. Keller, S.P. DenBaars, U.K. Mishra, Influence of the dynamic access resistance in the gm and fT linearity of AlGaN/GaN HEMTs. IEEE Trans. Electron Dev. 52(10), 2117–2123 (2005)CrossRefGoogle Scholar
  11. 11.
    H. Sarbishaei, D. Yu-Ting Wu, S. Boumaiza, Linearity of GaN HEMT RF power amplifiers - a circuit perspective, in 2012 IEEE/MTT-S International Microwave Symposium Digest (2012), pp. 1–3Google Scholar
  12. 12.
    S. Xie, V. Paidi, S. Heikman, L. Shen, A. Chini, U.K. Mishra, M.J.W. Rodwell, S.I. Long, High linearity GaN HEMT power amplifier with pre-linearization gate diode. Int. J. High Speed Electron. Syst. 14(3), 847–852 (2004)CrossRefGoogle Scholar
  13. 13.
    R. Pengelly, B. Millon, D. Farrell, B. Pribble, S. Wood, Application of non-linear models in a range of challenging GaN HEMT power amplifier designs, in International Microwave Symposium (2008)Google Scholar
  14. 14.
    K. Sharma, A. Dasgupta, S. Ghosh, S.A. Ahsan, S. Khandelwal, Y.S. Chauhan, Effect of access region and field plate on capacitance behavior of GaN HEMT, in Proceedings of the 2015 IEEE International Conference on Electron Devices and Solid-State Circuits, EDSSC 2015 (2015), pp. 499–502Google Scholar
  15. 15.
    S.A. Ahsan, S. Ghosh, K. Sharma, A. Dasgupta, S. Khandelwal, Y.S. Chauhan, Capacitance modeling in dual field-plate power GaN HEMT for accurate switching behavior. IEEE Trans. Electron Dev. 63(2), 565–572 (2016)CrossRefGoogle Scholar
  16. 16.
    T. Chowdhury, Study of Self-Heating Effects in GaN HEMTs. PhD thesis, Arizona State University, 2013Google Scholar
  17. 17.
    B. Padmanabhan, D. Vasileska, S.M. Goodnick, Current degradation in GaN HEMTs: is self-heating responsible. ECS Trans. 49(1), 103–109 (2012)CrossRefGoogle Scholar
  18. 18.
    K.R. Bagnall, Device-level thermal analysis of GaN-based electronics. Mechanical Engineering, MS(2009), 2009Google Scholar
  19. 19.
    A. Prejs, S. Wood, R. Pengelly, W. Pribble, Thermal analysis and its application to high power GaN HEMT amplifiers, in 2009 IEEE MTT-S International Microwave Symposium Digest, June (2009), pp. 917–920Google Scholar
  20. 20.
    K.R. Bagnall, O.I. Saadat, S. Joglekar, T. Palacios, E.N. Wang, Experimental characterization of the thermal time constants of GaN HEMTs via micro-Raman thermometry. IEEE Trans. Electron Dev. 64(5), 2121–2128 (2017)CrossRefGoogle Scholar
  21. 21.
    R. Vetury, N.Q. Zhang, S. Keller, U.K. Misha, The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs. IEEE Trans. Electron Dev. 48(3), 560–566 (2001)CrossRefGoogle Scholar
  22. 22.
    G. Meneghesso, M. Meneghini, D. Bisi, I. Rossetto, A. Cester, U.K. Mishra, E. Zanoni, Trapping phenomena in AlGaN/GaN HEMTs: a study based on pulsed and transient measurements. Semicond. Sci. Technol. 28(7), 074021 (2013)CrossRefGoogle Scholar
  23. 23.
    O. Jardel, F. De Groote, T. Reveyrand, J.C. Jacquet, C. Charbonniaud, J.P. Teyssier, D. Floriot, R. Quéré, An electrothermal model for AlGaN/GaN power HEMTs including trapping effects to improve large-signal simulation results on high VSWR. IEEE Trans. Microw. Theory Tech. 55(12), 2660–2669 (2007)CrossRefGoogle Scholar
  24. 24.
    H. Maehara, T. Gasseling, S. Dudkiewicz, Nonlinear characterization and modeling through pulsed IV/S parameters. Available online: https://www.maurymw.com/pdf/datasheets/CompactModeling.pdf
  25. 25.
    L. Dunleavy, C. Baylis, W. Curtice, R. Connick, Modeling GaN: powerful but challenging. IEEE Microw. Mag. 11(6), 82–96 (2010)CrossRefGoogle Scholar
  26. 26.
    K. Yuk, G.R. Branner, D. McQuate, An improved empirical large-signal model for high-power GaN HEMTs including self-heating and charge-trapping effects, in IEEE MTT-S International Microwave Symposium Digest (2009), pp. 753–756Google Scholar
  27. 27.
    C.P. Baylis, Improved techniques for nonlinear electrothermal FET modeling and measurement validation. PhD thesis, University of South Florida, 2007Google Scholar
  28. 28.
    H. Morkoc, J. Leach, Polarization in GaN based heterostructures and heterojunction field effect transistors (HFETs), in Polarization Effects in Semiconductors: From Ab Initio Theory to Device Applications (Springer, New York, 2008), pp. 373–466Google Scholar
  29. 29.
    J. Zhang, B. Syamal, X. Zhou, S. Arulkumaran, G.I. Ng, A compact model for generic Mis-hemts based on the unified 2DEG density expression. IEEE Trans. Electron Dev. 61(2), 314–323 (2014)CrossRefGoogle Scholar
  30. 30.
    A. Khakifirooz, O.M. Nayfeh, D. Antoniadis, A simple semiempirical short-channel MOSFET current–voltage model continuous across all regions of operation and employing only physical parameters. IEEE Trans. Electron Dev. 56(8), 1674–1680 (2009)CrossRefGoogle Scholar
  31. 31.
    U. Radhakrishna, A compact transport and charge model for GaN-based high electron mobility transistors for RF applications. PhD thesis, Massachusetts Institute of Technology, 2013Google Scholar
  32. 32.
    Si2 Approves Two IC Design Simulation Standards for Gallium Nitride Market (2018)Google Scholar
  33. 33.
    W.R. Curtice, M. Ettenberg, A nonlinear {G}a{A}s {FET} model for use in the design of output circuits for power amplifiers. IEEE Trans. Microw. Theory Tech. 33(12), 1383–1394 (1985)CrossRefGoogle Scholar
  34. 34.
    J.M. Golio, M.G. Miller, G.N. Maracas, D.A. Johnson, Frequency-dependent electrical characteristics of GaAs MESFETs. IEEE Trans. Electron Dev. 37(5), 1217–1227 (1990)CrossRefGoogle Scholar
  35. 35.
    I. Angelov, K. Andersson, D. Schreurs, D. Xiao, N. Rorsman, V. Desmaris, M. Sudow, H. Zirath, Large-signal modelling and comparison of AlGaN/GaN HEMTs and SiC MESFETs, in Asia-Pacific Microwave Conference Proceedings, APMC, vol. 1 (2006), pp. 279–282Google Scholar
  36. 36.
    R. Essaadali, A. Jarndal, A. Kouki, F.M. Ghannouchi, A new GaN HEMT equivalent circuit modeling technique based on X-parameters. IEEE Trans. Microw. Theory Tech. 64(9), 1–20 (2016)CrossRefGoogle Scholar
  37. 37.
    P. Wamback, W. Sansen, Distortion Analysis of Analog Integrated Circuits (Kluwer Academic Publishers, Dordrecht, 1998)CrossRefGoogle Scholar
  38. 38.
    K. Inoue, H. Yamamoto, K. Nakata, F. Yamada, T. Yamamoto, S. Sano, Linearity improvement of GaN HEMT for RF power amplifiers, in Technical Digest - IEEE Compound Semiconductor Integrated Circuit Symposium, CSIC, vol. 2(1) (2013), pp. 6–9Google Scholar
  39. 39.
    P.S. Park, D.N. Nath, S. Krishnamoorthy, S. Rajan, Electron gas dimensionality engineering in AlGaN/GaN high electron mobility transistors using polarization. Appl. Phys. Lett. 100(6), 1–4 (2012)CrossRefGoogle Scholar
  40. 40.
    S. Joglekar, U. Radhakrishna, D. Piedra, D. Antoniadis, T. Palacios, Large signal linearity enhancement of AlGaN/GaN high electron mobility transistors by device-level VT engineering for transconductance compensation. IEDM Tech. Dig. 3(d), 613–616 (2017)Google Scholar
  41. 41.
    J.S. Moon, D. Wong, M. Hu, P. Hashimoto, M. Antcliffe, C. McGuire, M Micovic, P. Willadson, 55% PAE and high power Ka-band GaN HEMTs with linearized transconductance via n+ GaN source contact ledge. IEEE Electron Dev. Lett. 29(8), 285–287 (2008)Google Scholar
  42. 42.
    Y.F. Wu, D. Kapolnek, P. Kozodoy, B. Thibeault, S. Keller, B.P. Keller, S.P. DenBaars, U.K. Mishra, AlGaN/GaN MODFETs with low ohmic contact resistances by source/drain n+re-growth, in Proceedings of the IEEE 24th International Symposium on Compound Semiconductors, ISCS 1997 (1997), pp. 431–434Google Scholar
  43. 43.
    J. Guo, G. Li, F. Faria, Y. Cao, R. Wang, J. Verma, X. Gao, S. Guo, E. Beam, A. Ketterson, M. Schuette, P. Saunier, M. Wistey, D. Jena, H. Xing, MBE-regrown ohmics in InAlN HEMTs with a regrowth interface resistance of 0.05 Ω mm. IEEE Electron Dev. Lett. 33(4), 525–527 (2012)Google Scholar
  44. 44.
    K. Shinohara, D.C. Regan, Y. Tang, A.L. Corrion, D.F. Brown, J.C. Wong, J.F. Robinson, H.H. Fung, A. Schmitz, T.C. Oh, S.J. Kim, P.S. Chen, R.G. Nagele, A.D. Margomenos, M. Micovic, Scaling of GaN HEMTs and Schottky diodes for submillimeter-wave MMIC applications. IEEE Trans. Electron Dev. 60(10), 2982–2996 (2013)CrossRefGoogle Scholar
  45. 45.
    K. Zhang, Y. Kong, G. Zhu, J. Zhou, X. Yu, High-linearity AlGaN/GaN FinFETs for microwave power applications. IEEE Electron Dev. Lett. 38(5), 615–618 (2017)CrossRefGoogle Scholar
  46. 46.
    K. Ohi, J.T. Asubar, K. Nishiguchi, T. Hashizume, Current stability in multi-mesa-channel AlGaN/GaN HEMTs. IEEE Trans. Electron Dev. 60(10), 2997–3004 (2013)CrossRefGoogle Scholar
  47. 47.
    K. Shinohara, C. King, A.D. Carter, E.J. Regan, A. Arias, J. Bergman, M. Urteaga, B. Brar, GaN-based field-effect transistors with laterally gated two-dimensional electron gas. IEEE Electron Dev. Lett. 39(3), 417–420 (2018)CrossRefGoogle Scholar
  48. 48.
    R.S. Howell, E.J. Stewart, R. Freitag, J. Parke, B. Nechay, H. Cramer, M. King, S. Gupta, J. Hartman, M. Snook, I. Wathuthanthri, P. Ralston, K. Renaldo, H.G. Henry, R.C. Clarke, The super-lattice castellated field effect transistor (SLCFET): a novel high performance transistor topology ideal for RF switching, in Technical Digest - International Electron Devices Meeting, IEDM, 2015 February, pp. 11.5.1–11.5.4Google Scholar
  49. 49.
    Y. Ando, A. Wakejima, Y. Okamoto, T. Nakayama, K. Ota, K. Yamanoguchi, Y. Murase, K. Kasahara, K. Matsunaga, T. Inoue, H. Miyamoto, Novel AlGaN/GaN dual-field-plate FET with high gain, increased linearity and stability, in Electron Devices Meeting, 2005. IEDM Technical Digest. IEEE International (c) (2005), pp. 576–579Google Scholar
  50. 50.
    B. Gilbert, The multi-tanh principle : a tutorial overview. IEEE J. Solid-State Circ. 33(1), 2–17 (1998)CrossRefGoogle Scholar
  51. 51.
    K. Mekechuk, W. Kim, Linearizing power amplifiers using digital predistortion, EDA tools and test hardware. High Frequency Electronics (April) (2004), pp. 18–24Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Samuel James Bader
    • 1
  • Keisuke Shinohara
    • 2
    Email author
  • Alyosha Molnar
    • 1
  1. 1.Cornell UniversityIthacaUSA
  2. 2.Teledyne Scientific & ImagingThousand OaksUSA

Personalised recommendations