Advertisement

High Power High Frequency Transistors: A Material’s Perspective

  • Robert L. CoffieEmail author
Chapter

Abstract

Johnson’s figure of merit (which is proportional to the breakdown field times saturation velocity) is often used to predict the potential power/frequency performance of a material system. Care must be taken when predicting performance based only on Johnson’s figure of merit as many parameters not considered by it can significantly impact performance. This chapter takes a closer look at key material parameters that should be considered when predicting performance solely on material properties. Along with Johnson’s figure of merit, the additional considerations of doping, low field mobility, thermal constraints, and heterojunctions are discussed. The analysis is used to explain why gallium nitride-based high electron mobility transistors have become the material system of choice for high power high frequency applications. The chapter concludes with the requirements for next generation material systems to displace gallium nitride as the preferred semiconductor for high power high frequency applications.

Keywords

Saturation velocity Mobility Johnson’s figure of merit (JFoM) Short-circuit-current-gain Critical electric field High electron mobility transistor (HEMT) Output Power figure of merit Loadline Class A Knee voltage Transconductance Maximum current Breakdown voltage Output power Power gain y-Parameters Filling factor Ionization energy z-Parameters Dissipated power Channel temperature Power added efficiency (PAE) Thermal conductivity Short channel effects 

Notes

Acknowledgements

This work was funded by ONR grant N00014-18-1-2709, monitored by Dr. Paul Maki.

References

  1. 1.
    B.J. Baliga, Semiconductors for high-voltage, vertical channel field-effect transistors. J. Appl. Phys. 53(3), 1759–1764 (1982)CrossRefGoogle Scholar
  2. 2.
    B.J. Baliga, Power semiconductor device figure of merit for high-frequency applications. IEEE Electron Device Lett. 10(10), 455–457 (1989)CrossRefGoogle Scholar
  3. 3.
    A. Daicho, T. Saito, S. Kurihara, A. Hiraiwa, H. Kawarada, High-reliability passivation of hydrogen-terminated diamond surface by atomic layer deposition of Al2O3. J. Appl. Phys. 115(22), 223711 (2014)Google Scholar
  4. 4.
    W.P. Dumke, J.M. Woodall, V.L. Rideout, GaAs-GaAlAs heterojunction transistor for high frequency operation. Solid-State Electron. 15(12), 1339–1343 (1972)CrossRefGoogle Scholar
  5. 5.
    D. Fanning, A. Balistreri, E. Beam III, K. Decker, S. Evans, R. Eye, W. Gaiewski, T. Nagle, P. Saunier, H.-Q. Tserng, High voltage GaAs pHEMT technology for S-band high power amplifiers, in CS MANTECH 2007 Digest (2007)Google Scholar
  6. 6.
    K. Hirama, H. Takayanagi, S. Yamauchi, J.H. Yang, H. Kawarada, H. Umezawa, Spontaneous polarization model for surface orientation dependence of diamond hole accumulation layer and its transistor performance. Appl. Phys. Lett. 92(11), 112107 (2008)CrossRefGoogle Scholar
  7. 7.
    A.Q. Huang, New unipolar switching power device figures of merit. IEEE Electron Device Lett. 25(5), 298–301 (2004)CrossRefGoogle Scholar
  8. 8.
    B. Hughes, P.J. Tasker, Bias dependence of the MODFET intrinsic model elements values at microwave frequencies. IEEE Trans. Electron Devices 36(10), 2267–2273 (1989)CrossRefGoogle Scholar
  9. 9.
    J.P. Ibbetson, P.T. Fini, K.D. Ness, S.P. DenBaars, J.S. Speck, U.K. Mishra, Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors. Appl. Phys. Lett. 77(2), 250–252 (2000)CrossRefGoogle Scholar
  10. 10.
    E.O. Johnson, Physical limitations on frequency and power parameters of transistors. RCA Rev. 26, 163–177 (1965)Google Scholar
  11. 11.
    M. Kasu, T. Oishi, Recent progress of diamond devices for RF applications, in 2016 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS) (IEEE, 2016)Google Scholar
  12. 12.
    M. Kasu, K. Ueda, H. Ye, Y. Yamauchi, S. Sasaki, T. Makimoto, 2 W/mm output power density at 1 GHz for diamond FETs. Electron. Lett. 41(22), 1249–1250 (2005)CrossRefGoogle Scholar
  13. 13.
    R.W. Keyes, Figure of merit for semiconductors for high-speed switches. Proc. IEEE 60(2), 225–225 (1972)CrossRefGoogle Scholar
  14. 14.
    I.-J. Kim, S. Matsumoto, T. Sakai, T. Yachi, New power device figure of merit for high-frequency applications, in Proceedings of International Symposium on Power Semiconductor Devices and IC’s: ISPSD ’95 (Inst. Electr. Eng. Japan, 1995), pp. 309–314Google Scholar
  15. 15.
    H. Kroemer, Theory of a wide-gap emitter for transistors. Proc. IRE 45(11), 1535–1537 (1957)CrossRefGoogle Scholar
  16. 16.
    P.H. Ladbrooke, MMIC Design GaAs FETs and HEMTs (Artech House, Boston, 1989)Google Scholar
  17. 17.
    D.S. Lee, Z. Liu, T. Palacios, GaN high electron mobility transistors for sub-millimeter wave applications. Jpn. J. Appl. Phys. 53(10), 100212 (2014)CrossRefGoogle Scholar
  18. 18.
    W. Liu, Handbook of III–V Heterojunction Bipolar Transistors (Wiley, New York, 1998)Google Scholar
  19. 19.
    A. Manoi, J.W. Pomeroy, N. Killat, M. Kuball, Benchmarking of thermal boundary resistance in AlGaN/GaN HEMTs on SiC substrates: implications of the nucleation layer microstructure. IEEE Electron Device Lett. 31(12), 1395–1397 (2010)CrossRefGoogle Scholar
  20. 20.
    D.J. Meyer, B.P. Downey, D.S. Katzer, N. Nepal, V.D. Wheeler, M.T. Hardy, T.J. Anderson, D.F. Storm, Epitaxial lift-off and transfer of III-N materials and devices from SiC substrates. IEEE Trans. Semicond. Manuf. 29(4), 384–389 (2016)CrossRefGoogle Scholar
  21. 21.
    T. Mimura, S. Hiyamizu, T. Fujii, K. Nanbu, A new field-effect transistor with selectively doped GaAs/n-AlxGa1−xAs Heterojunctions. Jpn. J. Appl. Phys. 19(5), L225–L227 (1980)CrossRefGoogle Scholar
  22. 22.
    J. Orton, The Story of Semiconductors (Oxford University Press, Oxford, 2004)zbMATHGoogle Scholar
  23. 23.
    R.A. Pucel, H.A. Haus, H. Statz, Signal and noise properties of Gallium Arsenide microwave field-effect transistors, in Advances in Electronics and Electron Physics (Elsevier, Amsterdam, 1975), pp. 195–265Google Scholar
  24. 24.
    M. Riordan, L. Hoddeson, Crystal Fire: The Birth of the Information Age (W. W. Norton & Company, London, 1997)Google Scholar
  25. 25.
    K. Shenai, R.S. Scott, B.J. Baliga, Optimum semiconductors for high-power electronics. IEEE Trans. Electron Devices 36(9), 1811–1823 (1989)CrossRefGoogle Scholar
  26. 26.
    W. Shockley, Circuit elements utilizing semiconductive material. U.S. Patent 2,569,347, 25 Sept 1951Google Scholar
  27. 27.
    J. Singh, Physics of Semiconductors and Their Heterostructures (McGraw-Hill, New York, 1993)Google Scholar
  28. 28.
    W.R. Smythe, Static and Dynamic Electricity (McGraw-Hill, New York, 1968)zbMATHGoogle Scholar
  29. 29.
    M. Sotoodeh, A.H. Khalid, A.A. Rezazadeh, Empirical low-field mobility model for III–V compounds applicable in device simulation codes. J. Appl. Phys. 87(6), 2890–2900 (2000)CrossRefGoogle Scholar
  30. 30.
    S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981)Google Scholar
  31. 31.
    P.J. Tasker, B. Hughes, Importance of source and drain resistance to the maximum fT of millimeter-wave MODFETs. IEEE Electron Device Lett. 10(7), 291–293 (1989)CrossRefGoogle Scholar
  32. 32.
    J.L.B. Walker, High-Power GaAs FET Amplifiers (Artech House, Norwood, 1993)Google Scholar
  33. 33.
    J.L.B. Walker, Extension of the Cripps technique to transistors with feedback, in 32nd European Microwave Conference, 2002 (IEEE, 2002)Google Scholar
  34. 34.
    H. Wang, F. Wang, J. Zhang, Power semiconductor device figure of merit for high-power-density converter design applications. IEEE Trans. Electron Devices 55(1), 466–470 (2008)CrossRefGoogle Scholar
  35. 35.
    E.W. Weisstein, Dilogarithm. http://mathworld.wolfram.com/dilogarithm.html
  36. 36.
    E.W. Weisstein, Lerch Transcedent. http://mathworld.wolfram.com/lerchtranscendent.html
  37. 37.
    Y.-F. Wu, M. Moore, A. Saxler, T. Wisleder, P. Parikh, 40-W/mm Double Field-plated GaN HEMTs, in 2006 64th Device Research Conference (IEEE, 2006).Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.RLC SolutionsPlanoUSA

Personalised recommendations