Skip to main content

Zonohedral Approximation of Spherical Structuring Element for Volumetric Morphology

  • 1661 Accesses

Part of the Lecture Notes in Computer Science book series (LNIP,volume 11482)


Performing dilation and erosion using large structuring elements can be computationally slow – a problem especially pronounced when processing volumetric data. To reduce the computational complexity of dilation/erosion using spherical structuring elements, we propose a method for approximating a sphere with a zonohedron. Since zonohedra can be created via successive dilations/erosions of line segments, this allows morphological operations to be performed in constant time per voxel. As the complexity of commonly used methods typically scales with the size of the structuring element, our method significantly improves the run time. We use the proposed approximation to detect large spherical objects in volumetric data. Results are compared with other image analysis frameworks demonstrating constant run time and significant performance gains.


  • Morphology
  • Computational efficiency
  • Zonohedra

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-20205-7_11
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   69.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-20205-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   89.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.


  1. Adams, R.: Radial decomposition of disks and spheres. CVGIP: Graph. Models Image Process. 55(5), 325–332 (1993)

    Google Scholar 

  2. Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J., Mahajan, A.: Mixed-integer nonlinear optimization. Acta Numerica 22, 1–131 (2013)

    CrossRef  MathSciNet  Google Scholar 

  3. Bourgain, J., Lindenstrauss, J., Milman, V.: Approximation of zonoids by zonotopes. Acta mathematica 162(1), 73–141 (1989)

    CrossRef  MathSciNet  Google Scholar 

  4. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    CrossRef  Google Scholar 

  5. Campi, S., Haas, D., Weil, W.: Approximation of zonoids by zonotopes in fixed directions. Discrete Comput. Geometry 11(4), 419–431 (1994)

    CrossRef  MathSciNet  Google Scholar 

  6. Domanski, L., Vallotton, P., Wang, D.: Parallel van Herk/Gil-Werman image morphology on GPUs using CUDA. In: GPU Technology Conference (2009)

    Google Scholar 

  7. Gil, J., Kimmel, R.: Efficient dilation, erosion, opening, and closing algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 24(12), 1606–1617 (2002)

    CrossRef  Google Scholar 

  8. Gil, J., Werman, M.: Computing 2-D min, median, and max filters. IEEE Trans. Pattern Anal. Mach. Intell. 15(5), 504–507 (1993)

    CrossRef  Google Scholar 

  9. Haralick, R.M., Sternberg, S.R., Zhuang, X.: Image analysis using mathematical morphology. IEEE Trans. Pattern Anal. Mach. Intell. 4, 532–550 (1987)

    CrossRef  Google Scholar 

  10. Martinez, J., Hornus, S., Claux, F., Lefebvre, S.: Chained segment offsetting for ray-based solid representations. Comput. Graph. 46, 36–47 (2015)

    CrossRef  Google Scholar 

  11. McMullen, P.: On zonotopes. Trans. Am. Math. Soc. 159, 91–109 (1971)

    CrossRef  MathSciNet  Google Scholar 

  12. Munkres, J.: Topology. Featured Titles for Topology Series, 2nd edn. Prentice Hall, Incorporated, Upper Saddle River (2000)

    MATH  Google Scholar 

  13. Nikopoulos, N., Pitas, I.: A fast implementation of 3-D binary morphological transformations. IEEE Trans. Image Process. 9(2), 283–286 (2000)

    CrossRef  Google Scholar 

  14. Park, H., Chin, R.T.: Decomposition of arbitrarily shaped morphological structuring elements. IEEE Trans. Pattern Anal. Mach. Intell. 17(1), 2–15 (1995)

    CrossRef  MathSciNet  Google Scholar 

  15. Shih, F.Y., Wu, Y.T.: Decomposition of binary morphological structuring elements based on genetic algorithms. Comput. Vis. Image Underst. 99(2), 291–302 (2005)

    CrossRef  Google Scholar 

  16. Soille, P., Breen, E.J., Jones, R.: Recursive implementation of erosions and dilations along discrete lines at arbitrary angles. IEEE Trans. Pattern Anal. Mach. Intell. 18(5), 562–567 (1996)

    CrossRef  Google Scholar 

  17. Urbach, E.R., Wilkinson, M.H.: Efficient 2-D gray-scale dilations and erosions with arbitrary flat structuring elements. In: IEEE International Conference on Image Processing, pp. 1573–1576. IEEE (2006)

    Google Scholar 

  18. Van Droogenbroeck, M., Buckley, M.J.: Morphological erosions and openings: fast algorithms based on anchors. J. Math. Imaging Vis. 22(2–3), 121–142 (2005)

    CrossRef  MathSciNet  Google Scholar 

  19. Van Droogenbroeck, M., Talbot, H.: Fast computation of morphological operations with arbitrary structuring elements. Pattern Recogn. Lett. 17(14), 1451–1460 (1996)

    CrossRef  Google Scholar 

  20. Van Herk, M.: A fast algorithm for local minimum and maximum filters on rectangular and octagonal kernels. Pattern Recogn. Lett. 13(7), 517–521 (1992)

    CrossRef  Google Scholar 

  21. Vaz, M.S., Kiraly, A.P., Mersereau, R.M.: Multi-level decomposition of Euclidean spheres. In: International Symposium on Mathematical Morphology, pp. 461–472 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Patrick M. Jensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Jensen, P.M., Trinderup, C.H., Dahl, A.B., Dahl, V.A. (2019). Zonohedral Approximation of Spherical Structuring Element for Volumetric Morphology. In: Felsberg, M., Forssén, PE., Sintorn, IM., Unger, J. (eds) Image Analysis. SCIA 2019. Lecture Notes in Computer Science(), vol 11482. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20204-0

  • Online ISBN: 978-3-030-20205-7

  • eBook Packages: Computer ScienceComputer Science (R0)