Abstract
Performing dilation and erosion using large structuring elements can be computationally slow – a problem especially pronounced when processing volumetric data. To reduce the computational complexity of dilation/erosion using spherical structuring elements, we propose a method for approximating a sphere with a zonohedron. Since zonohedra can be created via successive dilations/erosions of line segments, this allows morphological operations to be performed in constant time per voxel. As the complexity of commonly used methods typically scales with the size of the structuring element, our method significantly improves the run time. We use the proposed approximation to detect large spherical objects in volumetric data. Results are compared with other image analysis frameworks demonstrating constant run time and significant performance gains.
Keywords
- Morphology
- Computational efficiency
- Zonohedra
This is a preview of subscription content, access via your institution.
Buying options











References
Adams, R.: Radial decomposition of disks and spheres. CVGIP: Graph. Models Image Process. 55(5), 325–332 (1993)
Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J., Mahajan, A.: Mixed-integer nonlinear optimization. Acta Numerica 22, 1–131 (2013)
Bourgain, J., Lindenstrauss, J., Milman, V.: Approximation of zonoids by zonotopes. Acta mathematica 162(1), 73–141 (1989)
Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)
Campi, S., Haas, D., Weil, W.: Approximation of zonoids by zonotopes in fixed directions. Discrete Comput. Geometry 11(4), 419–431 (1994)
Domanski, L., Vallotton, P., Wang, D.: Parallel van Herk/Gil-Werman image morphology on GPUs using CUDA. In: GPU Technology Conference (2009)
Gil, J., Kimmel, R.: Efficient dilation, erosion, opening, and closing algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 24(12), 1606–1617 (2002)
Gil, J., Werman, M.: Computing 2-D min, median, and max filters. IEEE Trans. Pattern Anal. Mach. Intell. 15(5), 504–507 (1993)
Haralick, R.M., Sternberg, S.R., Zhuang, X.: Image analysis using mathematical morphology. IEEE Trans. Pattern Anal. Mach. Intell. 4, 532–550 (1987)
Martinez, J., Hornus, S., Claux, F., Lefebvre, S.: Chained segment offsetting for ray-based solid representations. Comput. Graph. 46, 36–47 (2015)
McMullen, P.: On zonotopes. Trans. Am. Math. Soc. 159, 91–109 (1971)
Munkres, J.: Topology. Featured Titles for Topology Series, 2nd edn. Prentice Hall, Incorporated, Upper Saddle River (2000)
Nikopoulos, N., Pitas, I.: A fast implementation of 3-D binary morphological transformations. IEEE Trans. Image Process. 9(2), 283–286 (2000)
Park, H., Chin, R.T.: Decomposition of arbitrarily shaped morphological structuring elements. IEEE Trans. Pattern Anal. Mach. Intell. 17(1), 2–15 (1995)
Shih, F.Y., Wu, Y.T.: Decomposition of binary morphological structuring elements based on genetic algorithms. Comput. Vis. Image Underst. 99(2), 291–302 (2005)
Soille, P., Breen, E.J., Jones, R.: Recursive implementation of erosions and dilations along discrete lines at arbitrary angles. IEEE Trans. Pattern Anal. Mach. Intell. 18(5), 562–567 (1996)
Urbach, E.R., Wilkinson, M.H.: Efficient 2-D gray-scale dilations and erosions with arbitrary flat structuring elements. In: IEEE International Conference on Image Processing, pp. 1573–1576. IEEE (2006)
Van Droogenbroeck, M., Buckley, M.J.: Morphological erosions and openings: fast algorithms based on anchors. J. Math. Imaging Vis. 22(2–3), 121–142 (2005)
Van Droogenbroeck, M., Talbot, H.: Fast computation of morphological operations with arbitrary structuring elements. Pattern Recogn. Lett. 17(14), 1451–1460 (1996)
Van Herk, M.: A fast algorithm for local minimum and maximum filters on rectangular and octagonal kernels. Pattern Recogn. Lett. 13(7), 517–521 (1992)
Vaz, M.S., Kiraly, A.P., Mersereau, R.M.: Multi-level decomposition of Euclidean spheres. In: International Symposium on Mathematical Morphology, pp. 461–472 (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Jensen, P.M., Trinderup, C.H., Dahl, A.B., Dahl, V.A. (2019). Zonohedral Approximation of Spherical Structuring Element for Volumetric Morphology. In: Felsberg, M., Forssén, PE., Sintorn, IM., Unger, J. (eds) Image Analysis. SCIA 2019. Lecture Notes in Computer Science(), vol 11482. Springer, Cham. https://doi.org/10.1007/978-3-030-20205-7_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-20205-7_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-20204-0
Online ISBN: 978-3-030-20205-7
eBook Packages: Computer ScienceComputer Science (R0)
-
Published in cooperation with
http://www.iapr.org/