Abstract
The behavior of living cells is significantly affected by the mechanical properties of the surrounding soft extracellular matrix (ECM) comprising of various types of biopolymers. More complexity is added as cell-generated forces in turn can mechanically modify their microenvironment. Moreover, these forces can also act as mechanical signals for other cells leading to emergent collective cell dynamics. Bulk measurement techniques are not capable of resolving these local mechanical interactions which are often hidden in 3D, thus, optical tweezers have emerged as a powerful tool to directly characterize microscale mechanics and forces at play. In this chapter, we first introduce a typical experimental setup of optical tweezers and calibration methods that has been widely accepted by the mechanobiology community. Subsequently, we discuss various ways in which optical tweezers can be used to probe mechanics at different length scales such as the cytoplasm at the sub-cellular level, at the level of whole cell and finally explore the cell-cell and cell-matrix interaction. Later, perspectives on the future development of optical tweezers to study cell-matrix interaction is also provided.
Keywords
- Extracellular matrix
- Optical tweezers
- Cell-matrix interaction
- Cell mechanics
- Microrheology
Satish Kumar Gupta and Jiawei Sun contribute equally to this work.
This is a preview of subscription content, access via your institution.
Buying options




Figure is reproduced with permission from [58]

Figure reproduced with permission from [44]

Figure reproduced with permission from [44]

Figure reproduced with permission from [31]

Figure reproduced with permission from [64]

Figure reproduced with permission from [63]

Figure reproduced with permission from [49]

Figure reproduced with permission from [64]

Figure reproduced with permission from [49]
References
Abbondanzieri, E.A., Greenleaf, W.J., Shaevitz, J.W., Landick, R., Block, S.M.: Direct observation of base-pair stepping by RNA polymerase. Nature 438, 460 (2005)
Allersma, M.W., Gittes, F., Stewart, R.J., Schmidt, C.F.: Two-dimensional tracking of ncd motility by back focal plane interferometry. Biophys. J. 74, 1074–1085 (1998)
Ashkin, A.: Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156 (1970)
Ashkin, A.: Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys. J. 61, 569–582 (1992)
Ashkin, A., Dziedzic, J.M.: Optical trapping and manipulation of viruses and bacteria. Science 235, 1517–1520 (1987)
Ashkin, A., Dziedzic, J.M., Bjorkholm, J., Chu, S.: Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986)
Ashkin, A., Dziedzic, J.M., Yamane, T.: Optical trapping and manipulation of single cells using infrared laser beams. Nature 330, 769 (1987)
Baker, B.M., Chen, C.S.: Deconstructing the third dimension—how 3D culture microenvironments alter cellular cues. J Cell Sci 125, 3015–3024 (2012)
Bambardekar, K., Clément, R., Blanc, O., Chardès, C., Lenne, P.-F.: Direct laser manipulation reveals the mechanics of cell contacts in vivo. Proc. Natl. Acad. Sci. 112, 1416–1421 (2015)
Bancelin, S., Aimé, C., Gusachenko, I., Kowalczuk, L., Latour, G., Coradin, T., Schanne-Klein, M.-C.: Determination of collagen fibril size via absolute measurements of second-harmonic generation signals. Nat. Commun. 5, 4920 (2014)
Bao, G., Suresh, S.: Cell and molecular mechanics of biological materials. Nat. Mater. 2, 715–725 (2003)
Bausch, A.R., Möller, W., Sackmann, E.: Measurement of local viscoelasticity and forces in living cells by magnetic tweezers. Biophys. J. 76, 573–579 (1999)
Berg-Sørensen, K., Flyvbjerg, H.: Power spectrum analysis for optical tweezers. Rev. Sci. Instrum. 75, 594–612 (2004)
Bianco, P.R., Brewer, L.R., Corzett, M., Balhorn, R., Yeh, Y., Kowalczykowski, S.C., Baskin, R.J.: Processive translocation and DNA unwinding by individual RecBCD enzyme molecules. Nature 409, 374 (2001)
Broedersz, C., Sheinman, M., MacKintosh, F.: Filament-length-controlled elasticity in 3D fiber networks. Phys Rev Lett 108, 078102 (2012)
Broedersz, C.P., MacKintosh, F.C.: Modeling semiflexible polymer networks. Rev. Mod. Phys. 86, 995 (2014)
Bronkhorst, P., Streekstra, G., Grimbergen, J., Nijhof, E., Sixma, J., Brakenhoff, G.: A new method to study shape recovery of red blood cells using multiple optical trapping. Biophys. J. 69, 1666 (1995)
Brown, R.A.: In the beginning there were soft collagen-cell gels: towards better 3D connective tissue models? Exp. Cell Res. 319, 2460–2469 (2013)
Burns, M.M., Fournier, J.-M., Golovchenko, J.A.: Optical matter: crystallization and binding in intense optical fields. Science 249, 749–754 (1990)
Bursac, P., et al.: Cytoskeletal remodelling and slow dynamics in the living cell. Nat. Mater. 4, 557 (2005)
Castelain, M., Rouxhet, P.G., Pignon, F., Magnin, A., Piau, J.-M.: Single-cell adhesion probed in-situ using optical tweezers: a case study with Saccharomyces cerevisiae. J. Appl. Phys. 111, 114701 (2012)
Chaudhuri, O., et al.: Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater. 15, 326 (2016)
Chen, B., Ji, B., Gao, H.: Modeling active mechanosensing in cell-matrix interactions. Annu. Rev. Biophys. 44, 1–32 (2015)
Chien, S.: Red cell deformability and its relevance to blood flow. Annu. Rev. Physiol. 49, 177–192 (1987)
Chowdhury, F., Na, S., Li, D., Poh, Y.-C., Tanaka, T.S., Wang, F., Wang, N.: Material properties of the cell dictate stress-induced spreading and differentiation in embryonic stem cells. Nat. Mater. 9, 82–88 (2010)
Cost, A.-L., Ringer, P., Chrostek-Grashoff, A., Grashoff, C.: How to measure molecular forces in cells: a guide to evaluating genetically-encoded FRET-based tension sensors. Cell. Mol. Bioeng. 8, 96–105 (2015)
Cukierman, E., Pankov, R., Yamada, K.M.: Cell interactions with three-dimensional matrices. Curr. Opin. Cell Biol. 14, 633–640 (2002)
Dao, M., Lim, C.T., Suresh, S.: Mechanics of the human red blood cell deformed by optical tweezers. J. Mech. Phys. Solids 51, 2259–2280 (2003)
Doyle, A.D., Yamada, K.M.: Cell biology: sensing tension. Nature 466, 192 (2010)
Dufrêne, Y.F., Evans, E., Engel, A., Helenius, J., Gaub, H.E., Müller, D.J.: Five challenges to bringing single-molecule force spectroscopy into living cells. Nat. Methods 8, 123 (2011)
Dutov, P., Antipova, O., Varma, S., Orgel, J.P., Schieber, J.D.: Measurement of elastic modulus of collagen type I single fiber. PloS One 11, e0145711 (2016)
Egerton, F.N.: A history of the ecological sciences, part 19: Leeuwenhoek’s microscopic natural history. Bull. Ecol. Soc. Am. 87, 47–58 (2006)
Ehrlicher, A.J., Krishnan, R., Guo, M., Bidan, C.M., Weitz, D.A., Pollak, M.R.: Alpha-actinin binding kinetics modulate cellular dynamics and force generation. Proc. Natl. Acad. Sci. 112, 6619–6624 (2015)
Elkhatib, N., Bresteau, E., Baschieri, F., Rioja, A.L., van Niel, G., Vassilopoulos, S., Montagnac, G.: Tubular clathrin/AP-2 lattices pinch collagen fibers to support 3D cell migration. Science 356, 4713 (2017)
Engler, A.J., Sen, S., Sweeney, H.L., Discher, D.E.: Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006)
Eriksen, R.L., Daria, V.R., Glückstad, J.: Fully dynamic multiple-beam optical tweezers. Opt. Express 10, 597–602 (2002)
Fällman, E., Axner, O.: Influence of a glass-water interface on the on-axis trapping of micrometer-sized spherical objects by optical tweezers. Appl. Opt. 42, 3915–3926 (2003)
Fodor, É., Guo, M., Gov, N., Visco, P., Weitz, D., van Wijland, F.: Activity-driven fluctuations in living cells. EPL (Europhys. Lett.) 110, 48005 (2015)
Gardel, M., Shin, J., MacKintosh, F., Mahadevan, L., Matsudaira, P., Weitz, D.: Elastic behavior of cross-linked and bundled actin networks. Science 304, 1301–1305 (2004)
Geiger, B., Bershadsky, A., Pankov, R., Yamada, K.M.: Transmembrane crosstalk between the extracellular matrix and the cytoskeleton. Nat. Rev. Mol. Cell Biol. 2, 793 (2001)
Grashoff, C., et al.: Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466, 263 (2010)
Gumbiner, B.M.: Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84, 345–357 (1996)
Gundersen, G.G., Worman, H.J.: Nuclear positioning. Cell 152, 1376–1389 (2013)
Guo, M., et al.: Probing the stochastic, motor-driven properties of the cytoplasm using force spectrum microscopy. Cell 158, 822–832 (2014)
Guo, M., et al.: The role of vimentin intermediate filaments in cortical and cytoplasmic mechanics. Biophys. J. 105, 1562–1568 (2013)
Guo, M., et al.: Cell volume change through water efflux impacts cell stiffness and stem cell fate. Proc. Natl. Acad. Sci. 2017, 05179 (2017)
Gupta, S.K., Guo, M.: Equilibrium and out-of-equilibrium mechanics of living mammalian cytoplasm. J. Mech. Phys. Solids 107, 284–293 (2017)
Gupta, S.K., Li, Y., Guo, M.: Anisotropic mechanics and dynamics of a living mammalian cytoplasm. Soft Matter 15, 190–199 (2019)
Han, Y.L., et al.: Cell contraction induces long-ranged stress stiffening in the extracellular matrix. Proc. Natl. Acad. Sci. 2017, 22619 (2018)
Han, Y.L., et al.: Engineering physical microenvironment for stem cell based regenerative medicine. Drug Discovery Today (2014)
Hanes, R.D., Jenkins, M.C., Egelhaaf, S.U.: Combined holographic-mechanical optical tweezers: construction, optimization, and calibration. Rev. Sci. Instrum. 80, 083703 (2009)
Heilbrunn, L.: The physical structure of the protoplasm of sea-urchin eggs. Am. Nat. 60, 143–156 (1926)
Heilbrunn, L.: The viscosity of protoplasm. Q. Rev. Biol. 2, 230–248 (1927)
Heisenberg, C.-P., Bellaïche, Y.: Forces in tissue morphogenesis and patterning. Cell 153, 948–962 (2013)
Henon, S., Lenormand, G., Richert, A., Gallet, F.: A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers. Biophys. J. 76, 1145–1151 (1999)
Hochmuth, R.M.: Micropipette aspiration of living cells. J. Biomech. 33, 15–22 (2000)
Howard, J.: Mechanics of motor proteins and the cytoskeleton. Sunderland, MA: Sinauer Associates (2001)
Hu, J., Jafari, S., Han, Y., Grodzinsky, A.J., Cai, S., Guo, M.: Size-and speed-dependent mechanical behavior in living mammalian cytoplasm. Proc. Natl. Acad. Sci. 2017, 02488 (2017)
Huang, S., Ingber, D.E.: Cell tension, matrix mechanics, and cancer development. Cancer Cell 8, 175–176 (2005)
Huttenlocher, A., Sandborg, R.R., Horwitz, A.F.: Adhesion in cell migration. Curr. Opin. Cell Biol. 7, 697–706 (1995)
Ingber, D.E., et al.: Cellular tensegrity: exploring how mechanical changes in the cytoskeleton regulate cell growth, migration, and tissue pattern during morphogenesis. In: International Review of Cytology, vol. 150, pp. 173–224. Elsevier (1994)
Jansen, K.A., Atherton, P., Ballestrem, C.: Mechanotransduction at the cell-matrix interface. Semin Cell Dev. Biol. 71, 75–83 (2017)
Jones, C.A.R., Cibula, M., Feng, J., Krnacik, E.A., McIntyre, D.H., Levine, H., Sun, B.: Micromechanics of cellularized biopolymer networks. PNAS 112, E5117 (2015)
Juliar, B.A., Keating, M.T., Kong, Y.P., Botvinick, E.L., Putnam, A.J.: Sprouting angiogenesis induces significant mechanical heterogeneities and ECM stiffening across length scales in fibrin hydrogels. Biomaterials 162, 99–108 (2018)
Lang, N.R., et al.: Estimating the 3D pore size distribution of biopolymer networks from directionally biased data. Biophys J 105, 1967–1975 (2013)
Lange, J.R., Fabry, B.: Cell and tissue mechanics in cell migration. Exp. Cell Res. 319, 2418–2423 (2013)
Lau, A.W., Hoffman, B.D., Davies, A., Crocker, J.C., Lubensky, T.C.: Microrheology, stress fluctuations, and active behavior of living cells. Phys. Rev. Lett. 91, 198101 (2003)
Lee, W.M., Reece, P.J., Marchington, R.F., Metzger, N.K., Dholakia, K.: Construction and calibration of an optical trap on a fluorescence optical microscope. Nat. Protoc. 2, 3226 (2007)
Lekka, M., Laidler, P., Gil, D., Lekki, J., Stachura, Z., Hrynkiewicz, A.: Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy. Eur. Biophys. J. 28, 312–316 (1999)
Lieleg, O., Claessens, M.M., Heussinger, C., Frey, E., Bausch, A.R.: Mechanics of bundled semiflexible polymer networks. Phys. Rev. Lett. 99, 088102 (2007)
Liu, Y.-P., Li, C., Liu, K.-K., Lai, A.C.: The deformation of an erythrocyte under the radiation pressure by optical stretch. J. Biomech. Eng. 128, 830–836 (2006)
Maloney, J.M., Nikova, D., Lautenschläger, F., Clarke, E., Langer, R., Guck, J., Van Vliet, K.J.: Mesenchymal stem cell mechanics from the attached to the suspended state. Biophys. J. 99, 2479–2487 (2010)
Mammoto, T., Ingber, D.E.: Mechanical control of tissue and organ development. Development 137, 1407–1420 (2010)
Mao, H., Arias-Gonzalez, J.R., Smith, S.B., Tinoco Jr., I., Bustamante, C.: Temperature control methods in a laser tweezers system. Biophys. J. 89, 1308–1316 (2005)
Maragò, O.M., Jones, P.H., Gucciardi, P.G., Volpe, G., Ferrari, A.C.: Optical trapping and manipulation of nanostructures. Nat. Nanotechnol. 8, 807 (2013)
Maskarinec, S.A., Franck, C., Tirrell, D.A., Ravichandran, G.: Quantifying cellular traction forces in three dimensions. Proc. Natl. Acad. Sci. 106, 22108–22113 (2009)
Matheson, W., Markham, M.: Infantile cortical hyperostosis. Br. Med. J. 1, 742 (1952)
Mills, J., et al.: Effect of plasmodial RESA protein on deformability of human red blood cells harboring Plasmodium falciparum. Proc. Natl. Acad. Sci. 104, 9213–9217 (2007)
Mio, C., Gong, T., Terray, A., Marr, D.: Design of a scanning laser optical trap for multiparticle manipulation. Rev. Sci. Instrum. 71, 2196–2200 (2000)
Mizuno, D., Tardin, C., Schmidt, C.F., MacKintosh, F.C.: Nonequilibrium mechanics of active cytoskeletal networks. Science 315, 370–373 (2007)
Munevar, S., Y-l, Wang, Dembo, M.: Traction force microscopy of migrating normal and H-ras transformed 3T3 fibroblasts. Biophys. J. 80, 1744–1757 (2001)
Neuman, K.C., Chadd, E.H., Liou, G.F., Bergman, K., Block, S.M.: Characterization of photodamage to Escherichia coli in optical traps. Biophys. J. 77, 2856–2863 (1999)
Neuman, K.C., Nagy, A.: Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods 5, 491 (2008)
Nishizaka, T., Miyata, H., Yoshikawa, H., Si, Ishiwata, Kinosita Jr., K.: Unbinding force of a single motor molecule of muscle measured using optical tweezers. Nature 377, 251 (1995)
O’Brien, F.J., Harley, B., Yannas, I.V., Gibson, L.J.: The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials 26, 433–441 (2005)
Onck, P., Koeman, T., Van Dillen, T., van der Giessen, E.: Alternative explanation of stiffening in cross-linked semiflexible networks. Phys. Rev. Lett. 95, 178102 (2005)
Parsons, J.T., Horwitz, A.R., Schwartz, M.A.: Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat. Rev. Mol. Cell Biol. 11, 633–643 (2010)
Pickup, M.W., Mouw, J.K., Weaver, V.M.: The extracellular matrix modulates the hallmarks of cancer. EMBO Rep. e201439246 (2014)
Plodinec, M., et al.: The nanomechanical signature of breast cancer. Nat. Nanotechnol. 7, 757 (2012)
Polacheck, W.J., Chen, C.S.: Measuring cell-generated forces: a guide to the available tools. Nat. Methods 13, 415 (2016)
Recho, P., Putelat, T., Truskinovsky, L.: Mechanics of motility initiation and motility arrest in crawling cells. J. Mech. Phys. Solids 84, 469–505 (2015)
Ridge, K.M., et al.: Methods for determining the cellular functions of Vimentin intermediate filaments. In: Methods in Enzymology, vol. 568, pp. 389–426. Elsevier (2016)
Röding, M., Guo, M., Weitz, D.A., Rudemo, M., Särkkä, A.: Identifying directional persistence in intracellular particle motion using Hidden Markov Models. Math. Biosci. 248, 140–145 (2014)
Sabass, B., Gardel, M.L., Waterman, C.M., Schwarz, U.S.: High resolution traction force microscopy based on experimental and computational advances. Biophys. J. 94, 207–220 (2008)
Santini, M.T., Rainaldi, G., Indovina, P.L.: Apoptosis, cell adhesion and the extracellular matrix in the three-dimensional growth of multicellular tumor spheroids. Crit. Rev. Oncol./Hematol. 36, 75–87 (2000)
Sasaki, K., Koshioka, M., Misawa, H., Kitamura, N., Masuhara, H.: Pattern formation and flow control of fine particles by laser-scanning micromanipulation. Opt. Lett. 16, 1463–1465 (1991)
Schmid-Schönbein, H., Volger, E.: Red-cell aggregation and red-cell deformability in diabetes. Diabetes 25, 897–902 (1976)
Serra-Picamal, X., et al.: Mechanical waves during tissue expansion. Nat. Phys. 8, 628 (2012)
Sharma, A., Licup, A.J., Jansen, K.A., Rens, R., Sheinman, M., Koenderink, G.H., MacKintosh, F.C.: Strain-controlled criticality governs the nonlinear mechanics of fibre networks. Nat. Phys. 12, 584–587 (2016)
Sleep, J., Wilson, D., Simmons, R., Gratzer, W.: Elasticity of the red cell membrane and its relation to hemolytic disorders: an optical tweezers study. Biophys. J. 77, 3085–3095 (1999)
Suresh, S., et al.: Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta Biomater. 1, 15–30 (2005)
Svoboda, K., Block, S.M.: Biological applications of optical forces. Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994)
Tambe, D.T., et al.: Collective cell guidance by cooperative intercellular forces. Nature Mater. 10, 469 (2011)
Vale, R.D.: The molecular motor toolbox for intracellular transport. Cell 112, 467–480 (2003)
Visscher, K., Gross, S.P., Block, S.M.: Construction of multiple-beam optical traps with nanometer-resolution position sensing. IEEE J. Sel. Top. Quantum Electron. 2, 1066–1076 (1996)
Wang, N., Butler, J.P., Ingber, D.E.: Mechanotransduction across the cell surface and through the cytoskeleton. Science 260, 1124–1127 (1993)
Weed, R.I., LaCelle, P.L., Merrill, E.W.: Metabolic dependence of red cell deformability. J. Clin. Invest. 48, 795–809 (1969)
Wu, P.-H., et al.: A comparison of methods to assess cell mechanical properties. Nat. Methods 15, 491–498 (2018)
Wyart, M., Liang, H., Kabla, A., Mahadevan, L.: Elasticity of floppy and stiff random networks. Phys. Rev. Lett. 101, 215501 (2008)
Xue, X. et al.: Mechanics-guided embryonic patterning of neuroectoderm tissue from human pluripotent stem cells. Nat. Mater. (2018)
Zhu, C., Bao, G., Wang, N.: Cell mechanics: mechanical response, cell adhesion, and molecular deformation. Annu. Rev. Biomed. Eng. 2, 189–226 (2000)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Gupta, S.K., Sun, J., Han, Y.L., Lyu, C., He, T., Guo, M. (2020). Quantification of Cell-Matrix Interaction in 3D Using Optical Tweezers. In: Zhang, Y. (eds) Multi-scale Extracellular Matrix Mechanics and Mechanobiology. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-030-20182-1_9
Download citation
DOI: https://doi.org/10.1007/978-3-030-20182-1_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-20181-4
Online ISBN: 978-3-030-20182-1
eBook Packages: EngineeringEngineering (R0)