Skip to main content

Roles of Interactions Between Cells and Extracellular Matrices for Cell Migration and Matrix Remodeling

  • Chapter
  • First Online:
Multi-scale Extracellular Matrix Mechanics and Mechanobiology

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 23))

Abstract

Cells can sense mechanical properties of surrounding environments and also structurally remodel the environments. Interactions between cells and extracellular matrix (ECM) play a crucial role in diverse cellular behaviors, including migration, growth, and differentiation. Advances in experimental and computational methods enabled us to better understand the molecular bases and underlying mechanisms of the cell-ECM interactions. This chapter provides a comprehensive review regarding how cells sense and remodel ECMs and why such capabilities are of great importance for cell migration. First, the molecular structure, dynamics, and functions of focal adhesions (FAs) formed between cells and ECM are discussed, followed by a brief review about the significance of interactions between FAs and the actin cytoskeleton occurring in the intracellular space. Then, it is discussed how cells remodel surrounding ECMs mechanically and biochemically. Additionally, various experimental and computational methods designed for studying cell migration facilitated by cell-ECM interactions and ECM remodeling are summarized, and findings obtained using these methods are discussed.

Jing Li and Wonyeong Jung are equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heisenberg, C.P., Bellaiche, Y.: Forces in tissue morphogenesis and patterning. Cell 153(5), 948–962 (2013)

    Google Scholar 

  2. Ghosh, K., Thodeti, C.K., Dudley, A.C., Mammoto, A., Klagsbrun, M., Ingber, D.E.: Tumor-derived endothelial cells exhibit aberrant Rho-mediated mechanosensing and abnormal angiogenesis in vitro. Proc. Natl. Acad. Sci. U.S.A. 105(32), 11305–11310 (2008)

    Google Scholar 

  3. Lo, C.M., Wang, H.B., Dembo, M., Wang, Y.L.: Cell movement is guided by the rigidity of the substrate. Biophys. J. 79(1), 144–152 (2000)

    Google Scholar 

  4. Engler, A.J., Sen, S., Sweeney, H.L., Discher, D.E.: Matrix elasticity directs stem cell lineage specification. Cell 126(4), 677–689 (2006)

    Google Scholar 

  5. Kumar, S., Weaver, V.M.: Mechanics, malignancy, and metastasis: the force journey of a tumor cell. Cancer Metastasis Rev. 28(1–2), 113–127 (2009)

    Google Scholar 

  6. Wirtz, D., Konstantopoulos, K., Searson, P.C.: The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat. Rev. Cancer 11(7), 512–522 (2011)

    Google Scholar 

  7. Brugues, A., Anon, E., Conte, V., Veldhuis, J.H., Gupta, M., Colombelli, J., Munoz, J.J., Brodland, G.W., Ladoux, B., Trepat, X.: Forces driving epithelial wound healing. Nat. Phys. 10(9), 683–690 (2014)

    Google Scholar 

  8. Li, B., Wang, J.H.: Fibroblasts and myofibroblasts in wound healing: force generation and measurement. J. Tissue Viability 20(4), 108–120 (2011)

    Google Scholar 

  9. Han, W.J., Chen, S.H., Yuan, W., Fan, Q.H., Tian, J.X., Wang, X.C., Chen, L.Q., Zhang, X.X., Wei, W.L., Liu, R.C., Qu, J.L., Jiao, Y., Austin, R.H., Liu, L.Y.: Oriented collagen fibers direct tumor cell intravasation. Proc. Natl. Acad. Sci. U.S.A. 113(40), 11208–11213 (2016)

    Google Scholar 

  10. Harris, A.K., Stopak, D., Wild, P.: Fibroblast Traction as a mechanism for Collagen Morphogenesis. Nature 290(5803), 249–251 (1981)

    Google Scholar 

  11. Ma, X., Schickel, M.E., Stevenson, M.D., Sarang-Sieminski, A.L., Gooch, K.J., Ghadiali, S.N., Hart, R.T.: Fibers in the extracellular matrix enable long-range stress transmission between cells. Biophys. J. 104(7), 1410–1418 (2013)

    Google Scholar 

  12. Winer, J.P., Oake, S., Janmey, P.A.: Non-linear elasticity of extracellular matrices enables contractile cells to communicate local position and orientation. PLoS ONE 4(7), e6382 (2009)

    Google Scholar 

  13. Provenzano, P.P., Eliceiri, K.W., Campbell, J.M., Inman, D.R., White, J.G., Keely, P.J.: Collagen reorganization at the tumor-stromal interface facilitates local invasion. Bmc Med. 4 (2006)

    Google Scholar 

  14. Vishwanath, M., Ma, L., Otey, C.A., Jester, J.V., Petroll, W.M.: Modulation of corneal fibroblast contractility within fibrillar collagen matrices. Invest. Ophthalmol. Vis. Sci. 44(11), 4724–4735 (2003)

    Google Scholar 

  15. Guo, C.L., Ouyang, M., Yu, J.Y., Maslov, J., Price, A., Shen, C.Y.: Long-range mechanical force enables self-assembly of epithelial tubular patterns. Proc. Natl. Acad. Sci. U.S.A. 109(15), 5576–5582 (2012)

    Google Scholar 

  16. Huhtala, P., Humphries, M.J., McCarthy, J.B., Tremble, P.M., Werb, Z., Damsky, C.H.: Cooperative signaling by alpha 5 beta 1 and alpha 4 beta 1 integrins regulates metalloproteinase gene expression in fibroblasts adhering to fibronectin. J. Cell Biol. 129(3), 867–879 (1995)

    Google Scholar 

  17. Humphries, J.D., Byron, A., Humphries, M.J.: Integrin ligands at a glance. J. Cell Sci. 119(19), 3901–3903 (2006)

    Google Scholar 

  18. Takada, Y., Ye, X., Simon, S.: The integrins. Genome Biol. 8(5), 215 (2007)

    Google Scholar 

  19. Brockbank, E.C., Bridges, J., Marshall, C.J., Sahai, E.: Integrin β1 is required for the invasive behaviour but not proliferation of squamous cell carcinoma cells in vivo. Br. J. Cancer 92, 102 (2004)

    Google Scholar 

  20. Arnaout, M.A., Mahalingam, B., Xiong, J.P.: Integrin structure, allostery, and bidirectional signaling. Annu. Rev. Cell Dev. Biol. 21, 381–410 (2005)

    Google Scholar 

  21. Tzima, E., del Pozo, M.A., Shattil, S.J., Chien, S., Schwartz, M.A.: Activation of integrins in endothelial cells by fluid shear stress mediates Rho-dependent cytoskeletal alignment. EMBO J. 20(17), 4639–4647 (2001)

    Google Scholar 

  22. Chrzanowska-Wodnicka, M., Burridge, K.: Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J. Cell Biol. 133(6), 1403–1415 (1996)

    Google Scholar 

  23. del Rio, A., Perez-Jimenez, R., Liu, R., Roca-Cusachs, P., Fernandez, J.M., Sheetz, M.P.: Stretching single talin rod molecules activates vinculin binding. Science 323(5914), 638–641 (2009)

    Google Scholar 

  24. Delon, I., Brown, N.H.: Integrins and the actin cytoskeleton. Curr. Opin. Cell Biol. 19(1), 43–50 (2007)

    Google Scholar 

  25. Burridge, K., Mangeat, P.: An interaction between vinculin and talin. Nature 308(5961), 744–746 (1984)

    Google Scholar 

  26. Galbraith, C.G., Yamada, K.M., Sheetz, M.P.: The relationship between force and focal complex development. J. Cell Biol. 159(4), 695–705 (2002)

    Google Scholar 

  27. DePasquale, J.A., Izzard, C.S.: Accumulation of talin in nodes at the edge of the lamellipodium and separate incorporation into adhesion plaques at focal contacts in fibroblasts. J. Cell Biol. 113(6), 1351–1359 (1991)

    Google Scholar 

  28. Balaban, N.Q., Schwarz, U.S., Riveline, D., Goichberg, P., Tzur, G., Sabanay, I., Mahalu, D., Safran, S., Bershadsky, A., Addadi, L., Geiger, B.: Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat. Cell Biol. 3(5), 466–472 (2001)

    Google Scholar 

  29. Kong, F., García, A.J., Mould, A.P., Humphries, M.J., Zhu, C.: Demonstration of catch bonds between an integrin and its ligand. J. Cell Biol. 185(7), 1275–1284 (2009)

    Google Scholar 

  30. Wang, X., Ha, T.: Defining single molecular forces required to activate integrin and notch signaling. Science 340(6135), 991–994 (2013)

    Google Scholar 

  31. Hirata, H., Sokabe, M., Lim, C.T.: Molecular mechanisms underlying the force-dependent regulation of actin-to-ECM linkage at the focal adhesions. Prog. Mol. Biol. Transl. Sci. 126, 135–154 (2014)

    Google Scholar 

  32. Choquet, D., Felsenfeld, D.P., Sheetz, M.P.: Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell 88(1), 39–48 (1997)

    Google Scholar 

  33. Katz, B.Z., Zamir, E., Bershadsky, A., Kam, Z., Yamada, K.M., Geiger, B.: Physical state of the extracellular matrix regulates the structure and molecular composition of cell-matrix adhesions. Mol. Biol. Cell 11(3), 1047–1060 (2000)

    Google Scholar 

  34. Riveline, D., Zamir, E., Balaban, N.Q., Schwarz, U.S., Ishizaki, T., Narumiya, S., Kam, Z., Geiger, B., Bershadsky, A.D.: Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J. Cell Biol. 153(6), 1175–1185 (2001)

    Google Scholar 

  35. Ballestrem, C., Hinz, B., Imhof, B.A., Wehrle-Haller, B.: Marching at the front and dragging behind: differential alpha-V beta 3-integrin turnover regulates focal adhesion behavior. J. Cell Biol. 155(7), 1319–1332 (2001)

    Google Scholar 

  36. Stutchbury, B., Atherton, P., Tsang, R., Wang, D.Y., Ballestrem, C.: Distinct focal adhesion protein modules control different aspects of mechanotransduction. J. Cell Sci. 130(9), 1612–1624 (2017)

    Google Scholar 

  37. Kanchanawong, P., Shtengel, G., Pasapera, A.M., Ramko, E.B., Davidson, M.W., Hess, H.F., Waterman, C.M.: Nanoscale architecture of integrin-based cell adhesions. Nature 468(7323), 580–584 (2010)

    Google Scholar 

  38. Liu, J., Wang, Y., Goh, W.I., Goh, H., Baird, M.A., Ruehland, S., Teo, S., Bate, N., Critchley, D.R., Davidson, M.W., Kanchanawong, P.: Talin determines the nanoscale architecture of focal adhesions. Proc. Natl. Acad. Sci. U.S.A. 112(35), E4864–E4873 (2015)

    Google Scholar 

  39. Zamir, E., Katz, M., Posen, Y., Erez, N., Yamada, K.M., Katz, B.Z., Lin, S., Lin, D.C., Bershadsky, A., Kam, Z., Geiger, B.: Dynamics and segregation of cell-matrix adhesions in cultured fibroblasts. Nat. Cell Biol. 2(4), 191–196 (2000)

    Google Scholar 

  40. Bidone, T.C., Jung, W., Maruri, D., Borau, C., Kamm, R.D., Kim, T.: Morphological transformation and force generation of active cytoskeletal networks. PLoS Comput. Biol. 13(1), e1005277 (2017)

    Google Scholar 

  41. Linsmeier, I., Banerjee, S., Oakes, P.W., Jung, W., Kim, T., Murrell, M.P.: Disordered actomyosin networks are sufficient to produce cooperative and telescopic contractility. Nat. Commun. 7, 12615 (2016)

    Google Scholar 

  42. Li, J., Biel, T., Lomada, P., Yu, Q., Kim, T.: Buckling-induced F-actin fragmentation modulates the contraction of active cytoskeletal networks. Soft Matter 13(17), 3213–3220 (2017)

    Google Scholar 

  43. Pellegrin, S., Mellor, H.: Actin stress fibres. J. Cell Sci. 120(Pt 20), 3491–3499 (2007)

    Google Scholar 

  44. Zigmond, S.H.: Formin-induced nucleation of actin filaments. Curr. Opin. Cell Biol. 16(1), 99–105 (2004)

    Google Scholar 

  45. Hotulainen, P., Lappalainen, P.: Stress fibers are generated by two distinct actin assembly mechanisms in motile cells. J. Cell Biol. 173(3), 383–394 (2006)

    Google Scholar 

  46. Wu, Z., Plotnikov, S.V., Moalim, A.Y., Waterman, C.M., Liu, J.: Two distinct actin networks mediate traction oscillations to confer focal adhesion mechanosensing. Biophys. J. 112(4), 780–794 (2017)

    Google Scholar 

  47. Welch, M.D., Mullins, R.D.: Cellular control of actin nucleation. Annu. Rev. Cell Dev. Biol. 18, 247–288 (2002)

    Google Scholar 

  48. Kumar, S., Maxwell, I.Z., Heisterkamp, A., Polte, T.R., Lele, T.P., Salanga, M., Mazur, E., Ingber, D.E.: Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophys. J. 90(10), 3762–3773 (2006)

    Google Scholar 

  49. Tamada, M., Sheetz, M.P., Sawada, Y.: Activation of a signaling cascade by cytoskeleton stretch. Dev. Cell 7(5), 709–718 (2004)

    Google Scholar 

  50. Kostic, A., Sheetz, M.P.: Fibronectin rigidity response through Fyn and p130Cas recruitment to the leading edge. Mol. Biol. Cell 17(6), 2684–2695 (2006)

    Google Scholar 

  51. Gupta, M., Sarangi, B.R., Deschamps, J., Nematbakhsh, Y., Callan-Jones, A., Margadant, F., Mege, R.M., Lim, C.T., Voituriez, R., Ladoux, B.: Adaptive rheology and ordering of cell cytoskeleton govern matrix rigidity sensing. Nat. Commun. 6, 7525 (2015)

    Google Scholar 

  52. Thoumine, O., Nerem, R.M., Girard, P.R.: Oscillatory shear stress and hydrostatic pressure modulate cell-matrix attachment proteins in cultured endothelial cells. Vitro Cell Dev. Biol. Anim. 31(1), 45–54 (1995)

    Google Scholar 

  53. Alexandrova, A.Y., Arnold, K., Schaub, S., Vasiliev, J.M., Meister, J.J., Bershadsky, A.D., Verkhovsky, A.B.: Comparative dynamics of retrograde actin flow and focal adhesions: formation of nascent adhesions triggers transition from fast to slow flow. PLoS ONE 3(9), e3234 (2008)

    Google Scholar 

  54. Albiges-Rizo, C., Destaing, O., Fourcade, B., Planus, E., Block, M.R.: Actin machinery and mechanosensitivity in invadopodia, podosomes and focal adhesions. J. Cell Sci. 122(Pt 17), 3037–3049 (2009)

    Google Scholar 

  55. Choi, C.K., Vicente-Manzanares, M., Zareno, J., Whitmore, L.A., Mogilner, A., Horwitz, A.R.: Actin and alpha-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner. Nat. Cell Biol. 10(9), 1039–1050 (2008)

    Google Scholar 

  56. Steketee, M.B., Tosney, K.W.: Three functionally distinct adhesions in filopodia: shaft adhesions control lamellar extension. J. Neurosci. 22(18), 8071–8083 (2002)

    Google Scholar 

  57. Schafer, C., Borm, B., Born, S., Mohl, C., Eibl, E.M., Hoffmann, B.: One step ahead: role of filopodia in adhesion formation during cell migration of keratinocytes. Exp. Cell Res. 315(7), 1212–1224 (2009)

    Google Scholar 

  58. Romero, S., Quatela, A., Bornschlog, T., Guadagnini, S., Bassereau, P., Guy, T.V.N.: Filopodium retraction is controlled by adhesion to its tip. J. Cell Sci. 125(21), 4999–5004 (2012)

    Google Scholar 

  59. Fierro-Gonzalez, J.C., White, M.D., Silva, J.C., Plachta, N.: Cadherin-dependent filopodia control preimplantation embryo compaction. Nat. Cell Biol. 15(12), 1424–1433 (2013)

    Google Scholar 

  60. Heidemann, S.R., Lamoureux, P., Buxbaum, R.E.: Growth cone behavior and production of traction force. J. Cell Biol. 111(5 Pt 1), 1949–1957 (1990)

    Google Scholar 

  61. Bornschlogl, T.: How filopodia pull: what we know about the mechanics and dynamics of filopodia. Cytoskeleton (Hoboken) 70(10), 590–603 (2013)

    Google Scholar 

  62. Jacquemet, G., Hamidi, H., Ivaska, J.: Filopodia in cell adhesion, 3D migration and cancer cell invasion. Curr. Opin. Cell Biol. 36, 23–31 (2015)

    Google Scholar 

  63. Albuschies, J., Vogel, V.: The role of filopodia in the recognition of nanotopographies. Sci. Rep. 3, 1658 (2013)

    Google Scholar 

  64. Lee, D., Fong, K.P., King, M.R., Brass, L.F., Hammer, D.A.: Differential dynamics of platelet contact and spreading. Biophys. J. 102(3), 472–482 (2012)

    Google Scholar 

  65. Disanza, A., Bisi, S., Winterhoff, M., Milanesi, F., Ushakov, D.S., Kast, D., Marighetti, P., Romet-Lemonne, G., Muller, H.M., Nickel, W., Linkner, J., Waterschoot, D., Ampe, C., Cortellino, S., Palamidessi, A., Dominguez, R., Carlier, M.F., Faix, J., Scita, G.: CDC42 switches IRSp53 from inhibition of actin growth to elongation by clustering of VASP. EMBO J. 32(20), 2735–2750 (2013)

    Google Scholar 

  66. Gardel, M.L., Schneider, I.C., Aratyn-Schaus, Y., Waterman, C.M.: Mechanical integration of actin and adhesion dynamics in cell migration. Annu. Rev. Cell Dev. Biol. 26, 315–333 (2010)

    Google Scholar 

  67. Jahed, Z., Shams, H., Mehrbod, M., Mofrad, M.R.: Mechanotransduction pathways linking the extracellular matrix to the nucleus. Int. Rev. Cell Mol. Biol. 310, 171–220 (2014)

    Google Scholar 

  68. Ponti, A., Machacek, M., Gupton, S.L., Waterman-Storer, C.M., Danuser, G.: Two distinct actin networks drive the protrusion of migrating cells. Science 305(5691), 1782–1786 (2004)

    Google Scholar 

  69. Vallotton, P., Small, J.V.: Shifting views on the leading role of the lamellipodium in cell migration: speckle tracking revisited. J. Cell Sci. 122(12), 1955 (2009)

    Google Scholar 

  70. Murphy, D.A., Courtneidge, S.A.: The’ins’ and’outs’ of podosomes and invadopodia: characteristics, formation and function. Nat. Rev. Mol. Cell Biol. 12(7), 413 (2011)

    Google Scholar 

  71. Weaver, A.M.: Invadopodia: specialized cell structures for cancer invasion. Clin. Exp. Metas. 23(2), 97–105 (2006)

    Google Scholar 

  72. Pelham Jr., R.J., Wang, Y.: Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl. Acad. Sci. U.S.A. 94(25), 13661–13665 (1997)

    Google Scholar 

  73. Liu, A.P., Chaudhuri, O., Parekh, S.H.: New advances in probing cell-extracellular matrix interactions. Integr. Biol. (Camb). 9(5), 383–405 (2017)

    Google Scholar 

  74. Terranova, V.P., Hujanen, E.S., Loeb, D.M., Martin, G.R., Thornburg, L., Glushko, V.: Use of a reconstituted basement membrane to measure cell invasiveness and select for highly invasive tumor cells. Proc. Natl. Acad. Sci. U.S.A. 83(2), 465–469 (1986)

    Google Scholar 

  75. McKinnon, D.D., Domaille, D.W., Cha, J.N., Anseth, K.S.: Biophysically defined and cytocompatible covalently adaptable networks as viscoelastic 3D cell culture systems. Adv. Mater. 26(6), 865–872 (2014)

    Google Scholar 

  76. Butcher, D.T., Alliston, T., Weaver, V.M.: A tense situation: forcing tumour progression. Nat. Rev. Cancer 9(2), 108–122 (2009)

    Google Scholar 

  77. Pathak, A., Kumar, S.: Biophysical regulation of tumor cell invasion: moving beyond matrix stiffness. Integr. Biol. (Camb). 3(4), 267–278 (2011)

    Google Scholar 

  78. Chaudhuri, O., Koshy, S.T., Branco da Cunha, C., Shin, J.W., Verbeke, C.S., Allison, K.H., Mooney, D.J.: Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium. Nat. Mater. 13(10), 970–978 (2014)

    Google Scholar 

  79. Das, R.K., Gocheva, V., Hammink, R., Zouani, O.F., Rowan, A.E.: Stress-stiffening-mediated stem-cell commitment switch in soft responsive hydrogels. Nat. Mater. 15(3), 318–325 (2016)

    Google Scholar 

  80. Gallant, N.D., Michael, K.E., Garcia, A.J.: Cell adhesion strengthening: contributions of adhesive area, integrin binding, and focal adhesion assembly. Mol. Biol. Cell 16(9), 4329–4340 (2005)

    Google Scholar 

  81. Kita, A., Sakurai, Y., Myers, D.R., Rounsevell, R., Huang, J.N., Seok, T.J., Yu, K., Wu, M.C., Fletcher, D.A., Lam, W.A.: Microenvironmental geometry guides platelet adhesion and spreading: a quantitative analysis at the single cell level. PLoS ONE 6(10), e26437 (2011)

    Google Scholar 

  82. Sim, J.Y., Moeller, J., Hart, K.C., Ramallo, D., Vogel, V., Dunn, A.R., Nelson, W.J., Pruitt, B.L.: Spatial distribution of cell-cell and cell-ECM adhesions regulates force balance while maintaining E-cadherin molecular tension in cell pairs. Mol. Biol. Cell 26(13), 2456–2465 (2015)

    Google Scholar 

  83. Song, J., Shawky, J.H., Kim, Y., Hazar, M., LeDuc, P.R., Sitti, M., Davidson, L.A.: Controlled surface topography regulates collective 3D migration by epithelial-mesenchymal composite embryonic tissues. Biomaterials 58, 1–9 (2015)

    Google Scholar 

  84. Oakes, P.W., Banerjee, S., Marchetti, M.C., Gardel, M.L.: Geometry regulates traction stresses in adherent cells. Biophys. J. 107(4), 825–833 (2014)

    Google Scholar 

  85. Alford, P.W., Nesmith, A.P., Seywerd, J.N., Grosberg, A., Parker, K.K.: Vascular smooth muscle contractility depends on cell shape. Integr. Biol. (Camb). 3(11), 1063–1070 (2011)

    Google Scholar 

  86. Agarwal, A., Farouz, Y., Nesmith, A.P., Deravi, L.F., McCain, M.L., Parker, K.K.: Micropatterning alginate substrates for in vitro cardiovascular muscle on a chip. Adv. Funct. Mater. 23(30), 3738–3746 (2013)

    Google Scholar 

  87. Thery, M., Racine, V., Pepin, A., Piel, M., Chen, Y., Sibarita, J.B., Bornens, M.: The extracellular matrix guides the orientation of the cell division axis. Nat. Cell Biol. 7(10), 947–953 (2005)

    Google Scholar 

  88. Lee, J., Abdeen, A.A., Huang, T.H., Kilian, K.A.: Controlling cell geometry on substrates of variable stiffness can tune the degree of osteogenesis in human mesenchymal stem cells. J. Mech. Behav. Biomed. Mater. 38, 209–218 (2014)

    Google Scholar 

  89. Duffy, R.M., Sun, Y., Feinberg, A.W.: Understanding the role of ECM protein composition and geometric micropatterning for engineering human skeletal muscle. Ann. Biomed. Eng. 44(6), 2076–2089 (2016)

    Google Scholar 

  90. Tee, S.Y., Fu, J., Chen, C.S., Janmey, P.A.: Cell shape and substrate rigidity both regulate cell stiffness. Biophys. J. 100(5), L25–L27 (2011)

    Google Scholar 

  91. Maheshwari, G., Brown, G., Lauffenburger, D.A., Wells, A., Griffith, L.G.: Cell adhesion and motility depend on nanoscale RGD clustering. J. Cell Sci. 113(Pt 10), 1677–1686 (2000)

    Google Scholar 

  92. Cavalcanti-Adam, E.A., Volberg, T., Micoulet, A., Kessler, H., Geiger, B., Spatz, J.P.: Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands. Biophys. J. 92(8), 2964–2974 (2007)

    Google Scholar 

  93. Selhuber-Unkel, C., Erdmann, T., Lopez-Garcia, M., Kessler, H., Schwarz, U.S., Spatz, J.P.: Cell adhesion strength is controlled by intermolecular spacing of adhesion receptors. Biophys. J. 98(4), 543–551 (2010)

    Google Scholar 

  94. Heydarkhan-Hagvall, S., Chof, C.H., Dunn, J., Heydarkhan, S., Schenke-Layland, K., Maclellan, W.R., Beygul, R.E.: Influence of systematically varied nano-scale topography on cell morphology and adhesion. Cell Commun. Adhes. 14(5), 181–194 (2007)

    Google Scholar 

  95. Dalby, M.J., Gadegaard, N., Wilkinson, C.D.: The response of fibroblasts to hexagonal nanotopography fabricated by electron beam lithography. J. Biomed. Mater. Res. A. 84(4), 973–979 (2008)

    Google Scholar 

  96. Lamers, E., Walboomers, X.F., Domanski, M., te Riet, J., van Delft, F.C.M.J.M., Luttge, R., Winnubst, L.A.J.A., Gardeniers, H.J.G.E., Jansen, J.A.: The influence of nanoscale grooved substrates on osteoblast behavior and extracellular matrix deposition. Biomaterials. 31(12), 3307–3316 (2010)

    Google Scholar 

  97. Petroll, W.M.: Dynamic assessment of cell-matrix mechanical interactions in three-dimensional culture. Methods Mol. Biol. 370, 67–82 (2007)

    Google Scholar 

  98. Friedl, P., Wolf, K., von Andrian, U.H., Harms, G.: Biological second and third harmonic generation microscopy. Curr. Protoc. Cell Biol. Chapter 4, Unit 4 15 (2007)

    Google Scholar 

  99. Giampieri, S., Manning, C., Hooper, S., Jones, L., Hill, C.S., Sahai, E.: Localized and reversible TGFβ signalling switches breast cancer cells from cohesive to single cell motility. Nat. Cell Biol. 11(11), 1287–1296 (2009)

    Google Scholar 

  100. Cox, T.R., Erler, J.T.: Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis. Model Mech. 4(2), 165–178 (2011)

    Google Scholar 

  101. Levental, K.R., Yu, H., Kass, L., Lakins, J.N., Egeblad, M., Erler, J.T., Fong, S.F., Csiszar, K., Giaccia, A., Weninger, W., Yamauchi, M., Gasser, D.L., Weaver, V.M.: Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139(5), 891–906 (2009)

    Google Scholar 

  102. Kraning-Rush, C.M., Califano, J.P., Reinhart-King, C.A.: Cellular traction stresses increase with increasing metastatic potential. PLoS ONE 7(2), e32572 (2012)

    Google Scholar 

  103. Dembo, M., Wang, Y.L.: Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys. J. 76(4), 2307–2316 (1999)

    Google Scholar 

  104. Weng, S., Fu, J.: Synergistic regulation of cell function by matrix rigidity and adhesive pattern. Biomaterials 32(36), 9584–9593 (2011)

    Google Scholar 

  105. Legant, W.R., Choi, C.K., Miller, J.S., Shao, L., Gao, L., Betzig, E., Chen, C.S.: Multidimensional traction force microscopy reveals out-of-plane rotational moments about focal adhesions. Proc. Natl. Acad. Sci. U.S.A. 110(3), 881–886 (2013)

    Google Scholar 

  106. Sun, Z., Martinez-Lemus, L.A., Hill, M.A., Meininger, G.A.: Extracellular matrix-specific focal adhesions in vascular smooth muscle produce mechanically active adhesion sites. Am. J. Physiol. Cell Physiol. 295(1), C268–C278 (2008)

    Google Scholar 

  107. Stanton, M.M., Parrillo, A., Thomas, G.M., McGimpsey, W.G., Wen, Q., Bellin, R.M., Lambert, C.R.: Fibroblast extracellular matrix and adhesion on microtextured polydimethylsiloxane scaffolds. J. Biomed. Mater. Res. B Appl. Biomater. 103(4), 861–869 (2015)

    Google Scholar 

  108. Grashoff, C., Hoffman, B.D., Brenner, M.D., Zhou, R., Parsons, M., Yang, M.T., McLean, M.A., Sligar, S.G., Chen, C.S., Ha, T., Schwartz, M.A.: Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466(7303), 263–266 (2010)

    Google Scholar 

  109. Morimatsu, M., Mekhdjian, A.H., Adhikari, A.S., Dunn, A.R.: Molecular tension sensors report forces generated by single integrin molecules in living cells. Nano Lett. 13(9), 3985–3989 (2013)

    Google Scholar 

  110. Zielinski, R., Mihai, C., Kniss, D., Ghadiali, S.N.: Finite element analysis of traction force microscopy: influence of cell mechanics, adhesion, and morphology. J. Biomech. Eng. 135(7), 71009 (2013)

    Google Scholar 

  111. Chan, C.E., Odde, D.J.: Traction dynamics of filopodia on compliant substrates. Science 322(5908), 1687–1691 (2008)

    Google Scholar 

  112. Owen, L.M., Adhikari, A.S., Patel, M., Grimmer, P., Leijnse, N., Kim, M.C., Notbohm, J., Franck, C., Dunn, A.R.: A cytoskeletal clutch mediates cellular force transmission in a soft, three-dimensional extracellular matrix. Mol. Biol. Cell 28(14), 1959–1974 (2017)

    Google Scholar 

  113. Wang, Y.L.: Flux at focal adhesions: slippage clutch, mechanical gauge, or signal depot. Sci STKE. 2007(377), pe10 (2007)

    Google Scholar 

  114. Aratyn-Schaus, Y., Gardel, M.L.: Transient frictional slip between integrin and the ECM in focal adhesions under myosin II tension. Curr. Biol. 20(13), 1145–1153 (2010)

    Google Scholar 

  115. Hu, K., Ji, L., Applegate, K.T., Danuser, G., Waterman-Storer, C.M.: Differential transmission of actin motion within focal adhesions. Science 315(5808), 111–115 (2007)

    Google Scholar 

  116. Gupton, S.L., Waterman-Storer, C.M.: Spatiotemporal feedback between actomyosin and focal-adhesion systems optimizes rapid cell migration. Cell 125(7), 1361–1374 (2006)

    Google Scholar 

  117. Chaudhuri, O., Gu, L., Darnell, M., Klumpers, D., Bencherif, S.A., Weaver, J.C., Huebsch, N., Mooney, D.J.: Substrate stress relaxation regulates cell spreading. Nat. Commun. 6, 6364 (2015)

    Google Scholar 

  118. Borau, C., Kim, T., Bidone, T., Garcia-Aznar, J.M., Kamm, R.D.: Dynamic mechanisms of cell rigidity sensing: insights from a computational model of actomyosin networks. PLoS ONE 7(11), e49174 (2012)

    Google Scholar 

  119. Cao, X., Ban, E., Baker, B.M., Lin, Y., Burdick, J.A., Chen, C.S., Shenoy, V.B.: Multiscale model predicts increasing focal adhesion size with decreasing stiffness in fibrous matrices. Proc. Natl. Acad. Sci. U.S.A. 114(23), E4549–E4555 (2017)

    Google Scholar 

  120. Muller, K.W., Bruinsma, R.F., Lieleg, O., Bausch, A.R., Wall, W.A., Levine, A.J.: Rheology of semiflexible bundle networks with transient linkers. Phys. Rev. Lett. 112(23), 238102 (2014)

    Google Scholar 

  121. Munster, S., Jawerth, L.M., Leslie, B.A., Weitz, J.I., Fabry, B., Weitz, D.A.: Strain history dependence of the nonlinear stress response of fibrin and collagen networks. Proc. Natl. Acad. Sci. U.S.A. 110(30), 12197–12202 (2013)

    Google Scholar 

  122. Bell, G.I.: Models for the specific adhesion of cells to cells. Science 200(4342), 618–627 (1978)

    Google Scholar 

  123. Nam, S., Hu, K.H., Butte, M.J., Chaudhuri, O.: Strain-enhanced stress relaxation impacts nonlinear elasticity in collagen gels. Proc. Natl. Acad. Sci. 113(20), 5492 (2016)

    Google Scholar 

  124. Frantz, C., Stewart, K.M., Weaver, V.M.: The extracellular matrix at a glance. J. Cell Sci. 123(24), 4195–4200 (2010)

    Google Scholar 

  125. De Wever, O., Demetter, P., Mareel, M., Bracke, M.: Stromal myofibroblasts are drivers of invasive cancer growth. Int. J. Cancer 123(10), 2229–2238 (2008)

    Google Scholar 

  126. Debnath, J., Brugge, J.S.: Modelling glandular epithelial cancers in three-dimensional cultures. Nat. Rev. Cancer 5(9), 675–688 (2005)

    Google Scholar 

  127. Shea, K.S.: Differential deposition of basement membrane components during formation of the caudal neural tube in the mouse embryo. Development 99(4), 509 (1987)

    Google Scholar 

  128. Ford, A.J., Rajagopalan, P.: Extracellular matrix remodeling in 3D: implications in tissue homeostasis and disease progression. 10(4), e1503 (2018)

    Google Scholar 

  129. Bard, J.B., Higginson, K.: Fibroblast-collagen interactions in the formation of the secondary stroma of the chick cornea. J. Cell Biol. 74(3), 816–827 (1977)

    Google Scholar 

  130. McDougall, S., Dallon, J., Sherratt, J., Maini, P.: Fibroblast migration and collagen deposition during dermal wound healing: mathematical modelling and clinical implications. Philos. Trans. A Math. Phys. Eng. Sci. 364(1843), 1385–1405 (2006)

    MathSciNet  Google Scholar 

  131. Alberts, B., Johnson, A., Lewis, J., Walter, P., Raff, M., Roberts, K.: Molecular Biology of the Cell, 4th edn. Routledge (2002)

    Google Scholar 

  132. Bonnans, C., Chou, J., Werb, Z.: Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 15(12), 786–801 (2014)

    Google Scholar 

  133. Wolf, K., Friedl, P.: Mapping proteolytic cancer cell-extracellular matrix interfaces. Clin. Exp. Metastasis 26(4), 289–298 (2009)

    Google Scholar 

  134. Jansen, K.A., Atherton, P., Ballestrem, C.: Mechanotransduction at the cell-matrix interface. Semin. Cell Dev. Biol. 71, 75–83 (2017)

    Google Scholar 

  135. Rudnicki, M.S., Cirka, H.A., Aghvami, M., Sander, E.A., Wen, Q., Billiar, K.L.: Nonlinear strain stiffening is not sufficient to explain how far cells can feel on fibrous protein gels. Biophys. J. 105(1), 11–20 (2013)

    Google Scholar 

  136. Ahmadzadeh, H., Webster, M.R., Behera, R., Valencia, A.M.J., Wirtz, D., Weeraratna, A.T., Shenoy, V.B.: Modeling the two-way feedback between contractility and matrix realignment reveals a nonlinear mode of cancer cell invasion. Proc. Natl. Acad. Sci. U.S.A. 114(9), E1617–E1626 (2017)

    Google Scholar 

  137. Hall, M.S., Alisafaei, F., Ban, E., Feng, X.Z., Hui, C.Y., Shenoy, V.B., Wu, M.M.: Fibrous nonlinear elasticity enables positive mechanical feedback between cells and ECMs. Proc. Natl. Acad. Sci. U.S.A. 113(49), 14043–14048 (2016)

    Google Scholar 

  138. Petroll, W.M., Cavanagh, H.D., Jester, J.V.: Dynamic three-dimensional visualization of collagen matrix remodeling and cytoskeletal organization in living corneal fibroblasts. Scanning 26(1), 1–10 (2004)

    Google Scholar 

  139. Notbohm, J., Lesman, A., Tirrell, D.A., Ravichandran, G.: Quantifying cell-induced matrix deformation in three dimensions based on imaging matrix fibers. Integr. Biol. 7(10), 1186–1195 (2015)

    Google Scholar 

  140. Ban, E., Franklin, J.M., Nam, S., Smith, L.R., Wang, H.L., Wells, R.G., Chaudhuri, O., Liphardt, J.T., Shenoy, V.B.: Mechanisms of plastic deformation in collagen networks induced by cellular forces. Biophys. J. 114(2), 450–461 (2018)

    Google Scholar 

  141. Nam, S., Lee, J., Brownfield, D.G., Chaudhuri, O.: Viscoplasticity enables mechanical remodeling of matrix by cells. Biophys. J. 111(10), 2296–2308 (2016)

    Google Scholar 

  142. Wisdom, K.M., Adebowale, K., Chang, J., Lee, J.Y., Nam, S., Desai, R., Rossen, N.S., Rafat, M., West, R.B., Hodgson, L., Chaudhuri, O.: Matrix mechanical plasticity regulates cancer cell migration through confining microenvironments. Nat. Commun. 9(1), 4144 (2018)

    Google Scholar 

  143. Storm, C., Pastore, J.J., MacKintosh, F.C., Lubensky, T.C., Janmey, P.A.: Nonlinear elasticity in biological gels. Nature 435(7039), 191–194 (2005)

    Google Scholar 

  144. Brown, A.E., Litvinov, R.I., Discher, D.E., Purohit, P.K., Weisel, J.W.: Multiscale mechanics of fibrin polymer: gel stretching with protein unfolding and loss of water. Science 325(5941), 741–744 (2009)

    Google Scholar 

  145. Onck, P.R., Koeman, T., van Dillen, T., van der Giessen, E.: Alternative explanation of stiffening in cross-linked semiflexible networks. Phys. Rev. Lett. 95(17), 178102 (2005)

    Google Scholar 

  146. Jansen, K.A., Bacabac, R.G., Piechocka, I.K., Koenderink, G.H.: Cells actively stiffen fibrin networks by generating contractile stress. Biophys. J. 105(10), 2240–2251 (2013)

    Google Scholar 

  147. van Helvert, S., Friedl, P.: Strain stiffening of fibrillar collagen during individual and collective cell migration identified by AFM nanoindentation. ACS Appl. Mater. Interfaces. 8(34), 21946–21955 (2016)

    Google Scholar 

  148. Han, Y.L., Ronceray, P., Xu, G.Q., Malandrino, A., Kamm, R.D., Lenz, M., Broedersz, C.P., Guo, M.: Cell contraction induces long-ranged stress stiffening in the extracellular matrix. Proc. Natl. Acad. Sci. U.S.A. 115(16), 4075–4080 (2018)

    Google Scholar 

  149. Polacheck, W.J., Chen, C.S.: Measuring cell-generated forces: a guide to the available tools. Nat. Methods 13(5), 415–423 (2016)

    Google Scholar 

  150. Murray, J.D., Oster, G.F.: Cell traction models for generating pattern and form in morphogenesis. J. Math. Biol. 19(3), 265–279 (1984)

    MathSciNet  MATH  Google Scholar 

  151. Ramtani, S., Fernandes-Morin, E., Geiger, D.: Remodeled-matrix contraction by fibroblasts: numerical investigations. Comput. Biol. Med. 32(4), 283–296 (2002)

    Google Scholar 

  152. Abhilash, A.S., Baker, B.M., Trappmann, B., Chen, C.S., Shenoy, V.B.: Remodeling of fibrous extracellular matrices by contractile cells: predictions from discrete fiber network simulations. Biophys. J. 107(8), 1829–1840 (2014)

    Google Scholar 

  153. Ronceray, P., Broedersz, C.P., Lenz, M.: Fiber networks amplify active stress. Proc. Natl. Acad. Sci. U.S.A. 113(11), 2827–2832 (2016)

    Google Scholar 

  154. Malandrino, A., Mak, M., Trepat, X., Kamm, R.D.: Non-Elastic Remodeling of the 3D Extracellular Matrix by Cell-Generated Forces. bioRxiv (2017)

    Google Scholar 

  155. Abercrombie, M., Heaysman, J.E., Pegrum, S.M.: The locomotion of fibroblasts in culture. I. Movements of the leading edge. Exp Cell Res. 59(3), 393–398 (1970)

    Google Scholar 

  156. Ridley, A.J., Schwartz, M.A., Burridge, K., Firtel, R.A., Ginsberg, M.H., Borisy, G., Parsons, J.T., Horwitz, A.R.: Cell migration: integrating signals from front to back. Science 302(5651), 1704–1709 (2003)

    Google Scholar 

  157. Ridley, A.J., Hall, A.: The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70(3), 389–399 (1992)

    Google Scholar 

  158. Petroll, W.M., Ma, L., Jester, J.V.: Direct correlation of collagen matrix deformation with focal adhesion dynamics in living corneal fibroblasts. J. Cell Sci. 116(8), 1481–1491 (2003)

    Google Scholar 

  159. Chen, W.T.: Mechanism of retraction of the trailing edge during fibroblast movement. J. Cell Biol. 90(1), 187–200 (1981)

    Google Scholar 

  160. Vicente-Manzanares, M., Newell-Litwa, K., Bachir, A.I., Whitmore, L.A., Horwitz, A.R.: Myosin IIA/IIB restrict adhesive and protrusive signaling to generate front-back polarity in migrating cells. J. Cell Biol. 193(2), 381–396 (2011)

    Google Scholar 

  161. Huttenlocher, A., Ginsberg, M.H., Horwitz, A.F.: Modulation of cell migration by integrin-mediated cytoskeletal linkages and ligand-binding affinity. J. Cell Biol. 134(6), 1551–1562 (1996)

    Google Scholar 

  162. Palecek, S.P., Loftus, J.C., Ginsberg, M.H., Lauffenburger, D.A., Horwitz, A.F.: Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature 385(6616), 537–540 (1997)

    Google Scholar 

  163. Doyle, A.D., Kutys, M.L., Conti, M.A., Matsumoto, K., Adelstein, R.S., Yamada, K.M.: Micro-environmental control of cell migration—myosin IIA is required for efficient migration in fibrillar environments through control of cell adhesion dynamics. J. Cell Sci. 125(9), 2244–2256 (2012)

    Google Scholar 

  164. Doyle, A.D., Carvajal, N., Jin, A., Matsumoto, K., Yamada, K.M.: Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions. Nat. Commun. 6 (2015)

    Google Scholar 

  165. Even-Ram, S., Yamada, K.M.: Cell migration in 3D matrix. Curr. Opin. Cell Biol. 17(5), 524–532 (2005)

    Google Scholar 

  166. Cukierman, E., Pankov, R., Stevens, D.R., Yamada, K.M.: Taking cell-matrix adhesions to the third dimension. Science 294(5547), 1708–1712 (2001)

    Google Scholar 

  167. Fraley, S.I., Feng, Y.F., Krishnamurthy, R., Kim, D.H., Celedon, A., Longmore, G.D., Wirtz, D.: A distinctive role for focal adhesion proteins in three-dimensional cell motility. Nat. Cell Biol. 12(6), 598–604 (2010)

    Google Scholar 

  168. Petrie, R.J., Yamada, K.M.: Multiple mechanisms of 3D migration: the origins of plasticity. Curr. Opin. Cell Biol. 42, 7–12 (2016)

    Google Scholar 

  169. Kang, Y.G., Jang, H., Yang, T.D., Notbohm, J., Choi, Y., Park, Y., Kim, B.M.: Quantification of focal adhesion dynamics of cell movement based on cell-induced collagen matrix deformation using second-harmonic generation microscopy. J. Biomed. Opt. 23(6) (2018)

    Google Scholar 

  170. Lammermann, T., Bader, B.L., Monkley, S.J., Worbs, T., Wedlich-Soldner, R., Hirsch, K., Keller, M., Forster, R., Critchley, D.R., Fassler, R., Sixt, M.: Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453(7191), 51–55 (2008)

    Google Scholar 

  171. Bergert, M., Chandradoss, S.D., Desai, R.A., Paluch, E.: Cell mechanics control rapid transitions between blebs and lamellipodia during migration. Proc. Natl. Acad. Sci. U.S.A. 109(36), 14434–14439 (2012)

    Google Scholar 

  172. Liu, Y.J., Le Berre, M., Lautenschlaeger, F., Maiuri, P., Callan-Jones, A., Heuze, M., Takaki, T., Voituriez, R., Piel, M.: Confinement and low adhesion induce fast amoeboid migration of slow mesenchymal cells. Cell 160(4), 659–672 (2015)

    Google Scholar 

  173. Bergert, M., Erzberger, A., Desai, R.A., Aspalter, I.M., Oates, A.C., Charras, G., Salbreux, G., Paluch, E.K.: Force transmission during adhesion-independent migration. Nat. Cell Biol. 17(4), 524 (2015)

    Google Scholar 

  174. Stroka, K.M., Jiang, H., Chen, S.H., Tong, Z., Wirtz, D., Sun, S.X., Konstantopoulos, K.: Water permeation drives tumor cell migration in confined microenvironments. Cell 157(3), 611–623 (2014)

    Google Scholar 

  175. Ghajar, C.M., Chen, X., Harris, J.W., Suresh, V., Hughes, C.C.W., Jeon, N.L., Putnam, A.J., George, S.C.: The effect of matrix density on the regulation of 3-D capillary morphogenesis. Biophys. J. 94(5), 1930–1941 (2008)

    Google Scholar 

  176. Wei, S.C., Fattet, L., Tsai, J.H., Guo, Y.R., Pai, V.H., Majeski, H.E., Chen, A.C., Sah, R.L., Taylor, S.S., Engler, A.J., Yang, J.: Matrix stiffness drives epithelial mesenchymal transition and tumour metastasis through a TWIST1-G3BP2 mechanotransduction pathway. Nat. Cell Biol. 17(5), 678–688 (2015)

    Google Scholar 

  177. Mason, B.N., Starchenko, A., Williams, R.M., Bonassar, L.J., Reinhart-King, C.A.: Tuning three-dimensional collagen matrix stiffness independently of collagen concentration modulates endothelial cell behavior. Acta Biomater. 9(1), 4635–4644 (2013)

    Google Scholar 

  178. Zaman, M.H., Trapani, L.M., Siemeski, A., MacKellar, D., Gong, H.Y., Kamm, R.D., Wells, A., Lauffenburger, D.A., Matsudaira, P.: Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc. Natl. Acad. Sci. U.S.A. 103(29), 10889–10894 (2006)

    Google Scholar 

  179. Ulrich, T.A., Pardo, E.M.D., Kumar, S.: The mechanical rigidity of the extracellular matrix regulates the structure, motility, and proliferation of glioma cells. Can. Res. 69(10), 4167–4174 (2009)

    Google Scholar 

  180. Provenzano, P.P., Inman, D.R., Eliceiri, K.W., Knittel, J.G., Yan, L., Rueden, C.T., White, J.G., Keely, P.J.: Collagen density promotes mammary tumor initiation and progression. Bmc Med. 6 (2008)

    Google Scholar 

  181. Peyton, S.R., Putnam, A.J.: Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion. J. Cell. Physiol. 204(1), 198–209 (2005)

    Google Scholar 

  182. Sunyer, R., Conte, V., Escribano, J., Elosegui-Artola, A., Labernadie, A., Valon, L., Navajas, D., García-Aznar, J.M., Muñoz, J.J., Roca-Cusachs, P., Trepat, X.: Collective cell durotaxis emerges from long-range intercellular force transmission. Science 353(6304), 1157 (2016)

    Google Scholar 

  183. Lang, N.R., Skodzek, K., Hurst, S., Mainka, A., Steinwachs, J., Schneider, J., Aifantis, K.E., Fabry, B.: Biphasic response of cell invasion to matrix stiffness in three-dimensional biopolymer networks. Acta Biomater. 13, 61–67 (2015)

    Google Scholar 

  184. Lautscham, L.A., Kammerer, C., Lange, J.R., Kolb, T., Mark, C., Schilling, A., Strissel, P.L., Strick, R., Gluth, C., Rowat, A.C., Metzner, C., Fabry, B.: Migration in confined 3D environments is determined by a combination of adhesiveness, nuclear volume, contractility, and cell stiffness. Biophys. J. 109(5), 900–913 (2015)

    Google Scholar 

  185. Denais, C.M., Gilbert, R.M., Isermann, P., McGregor, A.L., te Lindert, M., Weigelin, B., Davidson, P.M., Friedl, P., Wolf, K., Lammerding, J.: Nuclear envelope rupture and repair during cancer cell migration. Science 352(6283), 353–358 (2016)

    Google Scholar 

  186. Wolf, K., te Lindert, M., Krause, M., Alexander, S., te Riet, J., Willis, A.L., Hoffman, R.M., Figdor, C.G., Weiss, S.J., Friedl, P.: Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J. Cell Biol. 201(7), 1069–1084 (2013)

    Google Scholar 

  187. Pathak, A., Kumar, S.: Independent regulation of tumor cell migration by matrix stiffness and confinement. Proc. Natl. Acad. Sci. U.S.A. 109(26), 10334–10339 (2012)

    Google Scholar 

  188. Hakkinen, K.M., Harunaga, J.S., Doyle, A.D., Yamada, K.M.: Direct comparisons of the morphology, migration, cell adhesions, and actin cytoskeleton of fibroblasts in four different three-dimensional extracellular matrices. Tissue Eng. Part A 17(5–6), 713–724 (2011)

    Google Scholar 

  189. Doyle, A.D., Wang, F.W., Matsumoto, K., Yamada, K.M.: One-dimensional topography underlies three-dimensional fibrillar cell migration. J. Cell Biol. 184(4), 481–490 (2009)

    Google Scholar 

  190. Riching, K.M., Cox, B.L., Salick, M.R., Pehlke, C., Riching, A.S., Ponik, S.M., Bass, B.R., Crone, W.C., Jiang, Y., Weaver, A.M., Eliceiri, K.W., Keely, P.J.: 3D collagen alignment limits protrusions to enhance breast cancer cell persistence. Biophys. J. 107(11), 2546–2558 (2014)

    Google Scholar 

  191. Dickinson, R.B., Guido, S., Tranquillo, R.T.: Biased cell-migration of fibroblasts exhibiting contact guidance in oriented collagen gels. Ann. Biomed. Eng. 22(4), 342–356 (1994)

    Google Scholar 

  192. Ray, A., Lee, O., Win, Z., Edwards, R.M., Alford, P.W., Kim, D.H., Provenzano, P.P.: Anisotropic forces from spatially constrained focal adhesions mediate contact guidance directed cell migration. Nat. Commun. 8, 14923 (2017)

    Google Scholar 

  193. Drifka, C.R., Tod, J., Loeffler, A.G., Liu, Y., Thomas, G.J., Eliceiri, K.W., Kao, W.J.: Periductal stromal collagen topology of pancreatic ductal adenocarcinoma differs from that of normal and chronic pancreatitis. Mod. Pathol. 28(11), 1470–1480 (2015)

    Google Scholar 

  194. Friedl, P., Wolf, K.: Plasticity of cell migration: a multiscale tuning model. J. Cell Biol. 188(1), 11 (2010)

    Google Scholar 

  195. Harada, T., Swift, J., Irianto, J., Shin, J.-W., Spinler, K.R., Athirasala, A., Diegmiller, R., Dingal, P.C.D.P., Ivanovska, I.L., Discher, D.E.: Nuclear lamin stiffness is a barrier to 3D migration, but softness can limit survival. J. Cell Biol. 204(5), 669 (2014)

    Google Scholar 

  196. Green, B.J., Panagiotakopoulou, M., Pramotton, F.M., Stefopoulos, G., Kelley, S.O., Poulikakos, D., Ferrari, A.: Pore shape defines paths of metastatic cell migration. Nano Lett. 18(3), 2140–2147 (2018)

    Google Scholar 

  197. Grinnell, F.: Fibroblasts, myofibroblasts, and wound contraction. J. Cell Biol. 124(4), 401–404 (1994)

    Google Scholar 

  198. Stevenson, M.D., Sieminski, A.L., McLeod, C.M., Byfield, F.J., Barocas, V.H., Gooch, Keith J.: Pericellular conditions regulate extent of cell-mediated compaction of collagen gels. Biophys. J. 99(1), 19–28 (2010)

    Google Scholar 

  199. Wolf, K., Wu, Y.I., Liu, Y., Geiger, J., Tam, E., Overall, C., Stack, M.S., Friedl, P.: Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat. Cell Biol. 9(8), 893–904 (2007)

    Google Scholar 

  200. Wolf, K., Mazo, I., Leung, H., Engelke, K., von Andrian, U.H., Deryugina, E.I., Strongin, A.Y., Brocker, E.B., Friedl, P.: Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J. Cell Biol. 160(2), 267–277 (2003)

    Google Scholar 

  201. Velez, D.O., Tsui, B., Goshia, T., Chute, C.L., Han, A., Carter, H., Fraley, S.I.: 3D collagen architecture induces a conserved migratory and transcriptional response linked to vasculogenic mimicry. Nat. Commun. 8(1), 1651 (2017)

    Google Scholar 

  202. Gligorijevic, B., Bergman, A., Condeelis, J.: Multiparametric classification links tumor microenvironments with tumor cell phenotype. PLoS Biol. 12(11), e1001995 (2014)

    Google Scholar 

  203. Akiri, G., Sabo, E., Dafni, H., Vadasz, Z., Kartvelishvily, Y., Gan, N., Kessler, O., Cohen, T., Resnick, M., Neeman, M.: Lysyl oxidase-related protein-1 promotes tumor fibrosis and tumor progression in vivo. Can. Res. 63(7), 1657–1666 (2003)

    Google Scholar 

  204. He, X., Lee, B., Jiang, Y.: Cell-ECM interactions in tumor invasion. Adv. Exp. Med. Biol. 936, 73–91 (2016)

    Google Scholar 

  205. Pedersen, J.A., Lichter, S., Swartz, M.A.: Cells in 3D matrices under interstitial flow: effects of extracellular matrix alignment on cell shear stress and drag forces. J. Biomech. 43(5), 900–905 (2010)

    Google Scholar 

  206. Chisholm, R.H., Hughes, B.D., Landman, K.A., Zaman, M.H.: Analytic study of three-dimensional single cell migration with and without proteolytic enzymes. Cell Mol. Bioeng. 6(2) (2013)

    Google Scholar 

  207. Edalgo, Y.T.N., Versypt, A.N.F.: Mathematical modeling of metastatic cancer migration through a remodeling extracellular matrix. Processes 6(5) (2018)

    Google Scholar 

  208. Tozluoglu, M., Tournier, A.L., Jenkins, R.P., Hooper, S., Bates, P.A., Sahai, E.: Matrix geometry determines optimal cancer cell migration strategy and modulates response to interventions. Nat. Cell Biol. 15(7), 751–762 (2013)

    Google Scholar 

  209. Borau, C., Polacheck, W.J., Kamm, R.D., Garcia-Aznar, J.M.: Probabilistic Voxel-Fe model for single cell motility in 3D. Silico Cell Tissue Sci. 1, 2 (2014)

    Google Scholar 

  210. Reinhardt, J.W., Krakauer, D.A., Gooch, K.J.: Complex matrix remodeling and durotaxis can emerge from simple rules for cell-matrix interaction in agent-based models. J. Biomech. Eng. 135(7), 071003-071003-071010 (2013)

    Google Scholar 

  211. Kim, M.-C., Whisler, J., Silberberg, Y.R., Kamm, R.D., Asada, H.H.: Cell invasion dynamics into a three dimensional extracellular matrix fibre network. PLoS Comput. Biol. 11(10), e1004535 (2015)

    Google Scholar 

  212. Kim, M.-C., Silberberg, Y.R., Abeyaratne, R., Kamm, R.D., Asada, H.H.: Computational modeling of three-dimensional ECM-rigidity sensing to guide directed cell migration. Proc. Natl. Acad. Sci. U.S.A. 115(3), E390–E399 (2018)

    Google Scholar 

  213. Vallenius, T.: Actin stress fibre subtypes in mesenchymal-migrating cells. Open Biol. 3(6), 130001 (2013)

    Google Scholar 

  214. Yang, C., Czech, L., Gerboth, S., Kojima, S.-I., Scita, G., Svitkina, T.: Novel roles of formin mDia2 in lamellipodia and filopodia formation in motile cells. PLoS Biol. 5(11), e317 (2007)

    Google Scholar 

  215. Bangasser, B.L., Odde, D.J.: Master equation-based analysis of a motor-clutch model for cell traction force. Cell. Mol. Bioeng. 6(4), 449–459 (2013)

    Google Scholar 

  216. Bangasser, B.L., Rosenfeld, S.S., Odde, D.J.: Determinants of maximal force transmission in a motor-clutch model of cell traction in a compliant microenvironment. Biophys. J. 105(3), 581–592 (2013)

    Google Scholar 

  217. Caswell, P.T., Zech, T.: Actin-based cell protrusion in a 3D matrix. Trends Cell Biol. (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taeyoon Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, J., Jung, W., Nam, S., Chaudhuri, O., Kim, T. (2020). Roles of Interactions Between Cells and Extracellular Matrices for Cell Migration and Matrix Remodeling. In: Zhang, Y. (eds) Multi-scale Extracellular Matrix Mechanics and Mechanobiology. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-030-20182-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20182-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20181-4

  • Online ISBN: 978-3-030-20182-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics