Abstract
The study of fiber network structure and mechanics is key to understanding extracellular matrix (ECM) remodeling in a variety of diseases, including cancer. The tumor microenvironment, which consists of stromal cells and ECM constituents, is altered by tumor cells via biochemical and biomechanical signals in order to support cancer progression. In particular, the tumor ECM displays consistent remodeling phenotypes that have been shown to aid cancer invasion both in vivo and in vitro. In this chapter, we focus on collagen—the most abundant protein in the body that endows the ECM with its structural and mechanical properties. Hydrogels made of reconstituted collagen fibers are commonly used as ECM models to study cell-matrix interactions and cancer cell migration in vitro. Due to their hierarchical organization, collagen networks reveal complex mechanical properties at different length scales. We present a comprehensive review of the experimental and modeling techniques available to investigate the structure and multi-scale mechanics of collagen. We emphasize the nonlinear mechanical properties of collagen from monomers to fiber networks and highlight the different aspects of collagen mechanics investigated using different loading conditions. Improved methods for quantitative imaging and biomechanical modeling are continuously needed to provide a holistic understanding of collagen remodeling in response to cell-generated traction forces and to elucidate the mechanobiological pathways underlying cellular responses to biophysical cues.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alberts, B., Johnson, A.D., Lewis, J., Morgan, D., Raff, M., Roberts, K., Walter, P.: Molecular Biology of the Cell. W. W. Norton & Company, New York, NY (2014)
Cox, T.R., Erler, J.T.: Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis. Models Mech. 4, 165–178 (2011). https://doi.org/10.1242/dmm.004077
Malik, R., Lelkes, P.I., Cukierman, E.: Biomechanical and biochemical remodeling of stromal extracellular matrix in cancer. Trends Biotechnol. 33, 230–236 (2015). https://doi.org/10.1016/j.tibtech.2015.01.004
Lee, J.Y., Chaudhuri, O.: Regulation of breast cancer progression by extracellular matrix mechanics: insights from 3D culture models. ACS Biomater. Sci. Eng. 4, 302–313 (2018). https://doi.org/10.1021/acsbiomaterials.7b00071
Friedl, P., Wolf, K.: Tumour-cell invasion and migration: diversity and escape mechanisms. Nat. Rev. Cancer 3, 362–374 (2003). https://doi.org/10.1038/nrc1075
Haeger, A., Wolf, K., Zegers, M.M., Friedl, P.: Collective cell migration: guidance principles and hierarchies. Trends Cell Biol. 25, 556–566 (2015). https://doi.org/10.1016/j.tcb.2015.06.003
Wolf, K., te Lindert, M., Krause, M., Alexander, S., te Riet, J., Willis, A.L., Hoffman, R.M., Figdor, C.G., Weiss, S.J., Friedl, P.: Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J. Cell Biol. 201, 1069–1084 (2013). https://doi.org/10.1083/jcb.201210152
Pickup, M.W., Mouw, J.K., Weaver, V.M.: The extracellular matrix modulates the hallmarks of cancer. EMBO Rep. 15, 1243–1253 (2014). https://doi.org/10.15252/embr.201439246
Lo, C.-M., Wang, H.-B., Dembo, M., Wang, Y.: Cell movement is guided by the rigidity of the substrate. Biophys. J. 79, 144–152 (2000). https://doi.org/10.1016/S0006-3495(00)76279-5
Engler, A.J., Sen, S., Sweeney, H.L., Discher, D.E.: Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006). https://doi.org/10.1016/j.cell.2006.06.044
Paszek, M.J., Zahir, N., Johnson, K.R., Lakins, J.N., Rozenberg, G.I., Gefen, A., Reinhart-King, C.A., Margulies, S.S., Dembo, M., Boettiger, D., Hammer, D.A., Weaver, V.M.: Tensional homeostasis and the malignant phenotype. Cancer Cell 8, 241–254 (2005). https://doi.org/10.1016/j.ccr.2005.08.010
Ehret, A.E., Bircher, K., Stracuzzi, A., Marina, V., Zündel, M., Mazza, E.: Inverse poroelasticity as a fundamental mechanism in biomechanics and mechanobiology. Nat. Commun. 8, 1002 (2017). https://doi.org/10.1038/s41467-017-00801-3
Sander, E.A., Barocas, V.H.: Biomimetic collagen tissues: collagenous tissue engineering and other applications. In: Fratzl, P. (ed.) Collagen: Structure and Mechanics, pp. 475–504. Springer US, Boston, MA (2008)
Martin, L.J., Boyd, N.F.: Mammographic density Potential mechanisms of breast cancer risk associated with mammographic density: hypotheses based on epidemiological evidence. Breast Cancer Res. 10, 201 (2008). https://doi.org/10.1186/bcr1831
Boyd, N.F., Dite, G.S., Stone, J., Gunasekara, A., English, D.R., McCredie, M.R.E., Giles, G.G., Tritchler, D., Chiarelli, A., Yaffe, M.J., Hopper, J.L.: Heritability of mammographic density, a risk factor for breast cancer. N. Engl. J. Med. 347, 886–894 (2002). https://doi.org/10.1056/NEJMoa013390
Provenzano, P.P., Eliceiri, K.W., Campbell, J.M., Inman, D.R., White, J.G., Keely, P.J.: Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med. 4, 38 (2006). https://doi.org/10.1186/1741-7015-4-38
Conklin, M.W., Eickhoff, J.C., Riching, K.M., Pehlke, C.A., Eliceiri, K.W., Provenzano, P.P., Friedl, A., Keely, P.J.: Aligned collagen is a prognostic signature for survival in human breast carcinoma. Am. J. Pathol. 178, 1221–1232 (2011). https://doi.org/10.1016/j.ajpath.2010.11.076
Provenzano, P.P., Eliceiri, K.W., Keely, P.J.: Multiphoton microscopy and fluorescence lifetime imaging microscopy (FLIM) to monitor metastasis and the tumor microenvironment. Clin. Exp. Metas. 26, 357–370 (2009). https://doi.org/10.1007/s10585-008-9204-0
Conklin, M.W., Keely, P.J.: Why the stroma matters in breast cancer: insights into breast cancer patient outcomes through the examination of stromal biomarkers. Cell Adhes. Migr. 6, 249–260 (2012). https://doi.org/10.4161/cam.20567
Provenzano, P.P., Inman, D.R., Eliceiri, K.W., Trier, S.M., Keely, P.J.: Contact guidance mediated three-dimensional cell migration is regulated by Rho/ROCK-dependent matrix reorganization. Biophys. J. 95, 5374–5384 (2008). https://doi.org/10.1529/biophysj.108.133116
Acerbi, I., Cassereau, L., Dean, I., Shi, Q., Au, A., Park, C., Chen, Y.Y., Liphardt, J., Hwang, E.S., Weaver, V.M.: Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration. Integr. Biol. 7, 1120–1134 (2015). https://doi.org/10.1039/C5IB00040H
Levental, K.R., Yu, H., Kass, L., Lakins, J.N., Egeblad, M., Erler, J.T., Fong, S.F.T., Csiszar, K., Giaccia, A., Weninger, W., Yamauchi, M., Gasser, D.L., Weaver, V.M.: Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139, 891–906 (2009). https://doi.org/10.1016/j.cell.2009.10.027
Mitchell, M.J., Jain, R.K., Langer, R.: Engineering and physical sciences in oncology: challenges and opportunities. Nat. Rev. Cancer 17, 659–675 (2017). https://doi.org/10.1038/nrc.2017.83
Humphrey, J.D., Rajagopal, K.R.: A constrained mixture model for growth and remodeling of soft tissues. Math. Models Methods Appl. Sci. 12, 407–430 (2002). https://doi.org/10.1142/S0218202502001714
Cox, T.R., Erler, J.T.: Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. 14
Lee, G.Y., Kenny, P.A., Lee, E.H., Bissell, M.J.: Three-dimensional culture models of normal and malignant breast epithelial cells. Nat. Methods 4, 359–365 (2007). https://doi.org/10.1038/nmeth1015
Yamada, K.M., Cukierman, E.: Modeling tissue morphogenesis and cancer in 3D. Cell 130, 601–610 (2007). https://doi.org/10.1016/j.cell.2007.08.006
Fischbach, C., Chen, R., Matsumoto, T., Schmelzle, T., Brugge, J.S., Polverini, P.J., Mooney, D.J.: Engineering tumors with 3D scaffolds. Nat. Methods 4, 855–860 (2007). https://doi.org/10.1038/nmeth1085
Caliari, S.R., Burdick, J.A.: A practical guide to hydrogels for cell culture. Nat. Methods 13, 405–414 (2016). https://doi.org/10.1038/nmeth.3839
Sutherland, R.: Cell and environment interactions in tumor microregions: the multicell spheroid model. Science 240, 177–184 (1988). https://doi.org/10.1126/science.2451290
Soker, S.: Tumor organoids. Springer, Berlin (2017)
Ivascu, A., Kubbies, M.: Rapid generation of single-tumor spheroids for high-throughput cell function and toxicity analysis. J. Biomol. Screen. 11, 922–932 (2006). https://doi.org/10.1177/1087057106292763
Charoen, K.M., Fallica, B., Colson, Y.L., Zaman, M.H., Grinstaff, M.W.: Embedded multicellular spheroids as a biomimetic 3D cancer model for evaluating drug and drug-device combinations. Biomaterials 35, 2264–2271 (2014). https://doi.org/10.1016/j.biomaterials.2013.11.038
Reynolds, D.S., Tevis, K.M., Blessing, W.A., Colson, Y.L., Zaman, M.H., Grinstaff, M.W.: Breast cancer spheroids reveal a differential cancer stem cell response to chemotherapeutic treatment. Sci. Rep. 7, 10382 (2017). https://doi.org/10.1038/s41598-017-10863-4
Veelken, C., Bakker, G.-J., Drell, D., Friedl, P.: Single cell-based automated quantification of therapy responses of invasive cancer spheroids in organotypic 3D culture. Methods 128, 139–149 (2017). https://doi.org/10.1016/j.ymeth.2017.07.015
Kopanska, K.S., Alcheikh, Y., Staneva, R., Vignjevic, D., Betz, T.: Tensile forces originating from cancer spheroids facilitate tumor invasion. PLoS ONE 11, e0156442 (2016)
Soule, H.D., Maloney, T.M., Wolman, S.R., Peterson, W.D., Brenz, R., McGrath, C.M., Russo, J., Pauley, R.J., Jones, R.F., Brooks, S.C.: Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Res. 50, 6075–6086 (1990)
Cailleau, R., Mackay, B., Young, R.K., Reeves, W.J.: Tissue culture studies on pleural effusions from breast carcinoma patients. Cancer Res. 34, 10 (1974)
The Physical Sciences—Oncology Centers Network: A physical sciences network characterization of non-tumorigenic and metastatic cells. Sci. Rep. 3 (2013). https://doi.org/10.1038/srep01449
Cheng, G., Tse, J., Jain, R.K., Munn, L.L.: Micro-environmental mechanical stress controls tumor spheroid size and morphology by suppressing proliferation and inducing apoptosis in cancer cells. PLoS ONE 4, e4632 (2009). https://doi.org/10.1371/journal.pone.0004632
Gjorevski, N., Piotrowski, A.S., Varner, V.D., Nelson, C.M.: Dynamic tensile forces drive collective cell migration through three-dimensional extracellular matrices. Sci. Rep. 5, 11458 (2015). https://doi.org/10.1038/srep11458
Grinnell, F., Petroll, W.M.: Cell motility and mechanics in three-dimensional collagen matrices. Annu. Rev. Cell Dev. Biol. 26, 335–361 (2010). https://doi.org/10.1146/annurev.cellbio.042308.113318
Petroll, W.M., Cavanagh, H.D., Jester, J.V.: Dynamic three-dimensional visualization of collagen matrix remodeling and cytoskeletal organization in living corneal fibroblasts. Scanning 26, 1–10 (2004)
Vader, D., Kabla, A., Weitz, D., Mahadevan, L.: Strain-induced alignment in collagen gels. PLoS ONE 4, e5902 (2009). https://doi.org/10.1371/journal.pone.0005902
Klebe, R.J., Caldwell, H., Milam, S.: Cells transmit spatial information by orienting collagen fibers. Matrix 9, 451–458 (1990). https://doi.org/10.1016/S0934-8832(11)80014-4
Silver, F.H., Freeman, J.W., Seehra, G.P.: Collagen self-assembly and the development of tendon mechanical properties. J. Biomech. 36, 1529–1553 (2003). https://doi.org/10.1016/S0021-9290(03)00135-0
Veis, A., George, A.: Fundamentals of interstitial collagen self-assembly. In: Yurchenco, P.D., Birk, D.E., Mecham, R.P. (eds.) Extracellular Matrix Assembly and Structure, pp. 15–45. Academic Press, San Diego (1994)
Holmes, D.F., Capaldi, M.J., Chapman, J.A.: Reconstitution of collagen fibrils in vitro; the assembly process depends on the initiating procedure. Int. J. Biol. Macromol. 8, 161–166 (1986). https://doi.org/10.1016/0141-8130(86)90020-6
Wood, G., Keech, M.K.: The formation of fibrils from collagen solutions 1. The effect of experimental conditions: kinetic and electron-microscope studies. Biochem. J. 75, 588 (1960)
Christiansen, D.L., Huang, E.K., Silver, F.H.: Assembly of type I collagen: fusion of fibril subunits and the influence of fibril diameter on mechanical properties. Matrix Biol. 19, 409–420 (2000). https://doi.org/10.1016/S0945-053X(00)00089-5
Roeder, B.A., Kokini, K., Sturgis, J.E., Robinson, J.P., Voytik-Harbin, S.L.: Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied microstructure. J. Biomech. Eng. 124, 214–222 (2002). https://doi.org/10.1115/1.1449904
Raub, C.B., Suresh, V., Krasieva, T., Lyubovitsky, J., Mih, J.D., Putnam, A.J., Tromberg, B.J., George, S.C.: Noninvasive assessment of collagen gel microstructure and mechanics using multiphoton microscopy. Biophys. J. 92, 2212–2222 (2007). https://doi.org/10.1529/biophysj.106.097998
Raub, C.B., Unruh, J., Suresh, V., Krasieva, T., Lindmo, T., Gratton, E., Tromberg, B.J., George, S.C.: Image correlation spectroscopy of multiphoton images correlates with collagen mechanical properties. Biophys. J. 94, 2361–2373 (2008). https://doi.org/10.1529/biophysj.107.120006
Wood, G.C.: The formation of fibrils from collagen solutions. 2. A mechanism for collagen-fibril formation. Biochem. J. 75, 598–605 (1960)
Zhu, J., Kaufman, L.J.: Collagen I self-assembly: revealing the developing structures that generate turbidity. Biophys. J. 106, 1822–1831 (2014). https://doi.org/10.1016/j.bpj.2014.03.011
Forgacs, G., Newman, S.A., Hinner, B., Maier, C.W., Sackmann, E.: Assembly of collagen matrices as a phase transition revealed by structural and rheologic studies. Biophys. J. 84, 1272–1280 (2003)
Makris, E.A., Hu, J.C.: Induced collagen cross-links enhance cartilage integration. PLoS ONE 8, e60719 (2013)
Makris, E.A., Responte, D.J., Paschos, N.K., Hu, J.C., Athanasiou, K.A.: Developing functional musculoskeletal tissues through hypoxia and lysyl oxidase-induced collagen cross-linking. Proc. Natl. Acad. Sci. 111, E4832–E4841 (2014). https://doi.org/10.1073/pnas.1414271111
Greenberg, C.S., Birckbichler, P.J., Rice, R.H.: Transglutaminases: multifunctional cross-linking enzymes that stabilize tissues. FASEB J. 5, 3071–3077 (1991)
Orban, J.M., Wilson, L.B., Kofroth, J.A., El-Kurdi, M.S., Maul, T.M., Vorp, D.A.: Crosslinking of collagen gels by transglutaminase. J. Biomed. Mater. Res. Part A 68, 756–762 (2004)
Olde Damink, L.H.H., Dijkstra, P.J., Van Luyn, M.J.A., Van Wachem, P.B., Nieuwenhuis, P., Feijen, J.: Glutaraldehyde as a crosslinking agent for collagen-based biomaterials. J. Mater. Sci. Mater. Med. 6, 460–472 (1995). https://doi.org/10.1007/bf00123371
Sheu, M.-T., Huang, J.-C., Yeh, G.-C., Ho, H.-O.: Characterization of collagen gel solutions and collagen matrices for cell culture. Biomaterials 22, 1713–1719 (2001). https://doi.org/10.1016/S0142-9612(00)00315-X
Tian, Z., Liu, W., Li, G.: The microstructure and stability of collagen hydrogel cross-linked by glutaraldehyde. Polym. Degrad. Stab. 130, 264–270 (2016). https://doi.org/10.1016/j.polymdegradstab.2016.06.015
Girton, T.S., Oegema, T.R., Tranquillo, R.T.: Exploiting glycation to stiffen and strengthen tissue equivalents for tissue engineering. J. Biomed. Mater. Res. 46, 87–92 (1999). https://doi.org/10.1002/(SICI)1097-4636(199907)46:1%3c87:AID-JBM10%3e3.0.CO;2-K
Roy, R., Boskey, A., Bonassar, L.J.: Processing of type I collagen gels using nonenzymatic glycation. J. Biomed. Mater. Res. Part A. 9999A, NA–NA (2009). https://doi.org/10.1002/jbm.a.32231
Mason, B.N., Starchenko, A., Williams, R.M., Bonassar, L.J., Reinhart-King, C.A.: Tuning three-dimensional collagen matrix stiffness independently of collagen concentration modulates endothelial cell behavior. Acta Biomater. 9, 4635–4644 (2013). https://doi.org/10.1016/j.actbio.2012.08.007
Bordeleau, F., Mason, B.N., Lollis, E.M., Mazzola, M., Zanotelli, M.R., Somasegar, S., Califano, J.P., Montague, C., LaValley, D.J., Huynh, J., Mencia-Trinchant, N., Negrón Abril, Y.L., Hassane, D.C., Bonassar, L.J., Butcher, J.T., Weiss, R.S., Reinhart-King, C.A.: Matrix stiffening promotes a tumor vasculature phenotype. Proc. Natl. Acad. Sci. 114, 492–497 (2017). https://doi.org/10.1073/pnas.1613855114
Fujimori, E.: Ultraviolet light-induced change in collagen macromolecules. Biopolymers 3, 115–119 (1965)
Hapach, L.A., VanderBurgh, J.A., Miller, J.P., Reinhart-King, C.A.: Manipulation of in vitro collagen matrix architecture for scaffolds of improved physiological relevance. Phys. Biol. 12, 061002 (2015). https://doi.org/10.1088/1478-3975/12/6/061002
Brightman, A.O., Rajwa, B.P., Sturgis, J.E., McCallister, M.E., Robinson, J.P., Voytik-Harbin, S.L.: Time-lapse confocal reflection microscopy of collagen fibrillogenesis and extracellular matrix assembly in vitro. Biopolymers 54, 222–234 (2000). https://doi.org/10.1002/1097-0282(200009)54:3%3c222:AID-BIP80%3e3.0.CO;2-K
Friedl, P., Maaser, K., Klein, C.E., Niggemann, B., Krohne, G., Zänker, K.S.: Migration of highly aggressive MV3 melanoma cells in 3-dimensional collagen lattices results in local matrix reorganization and shedding of α2 and β1 integrins and CD44. Cancer Res. 57, 2061–2070 (1997)
Kaufman, L.J., Brangwynne, C.P., Kasza, K.E., Filippidi, E., Gordon, V.D., Deisboeck, T.S., Weitz, D.A.: Glioma expansion in collagen I matrices: analyzing collagen concentration-dependent growth and motility patterns. Biophys. J. 89, 635–650 (2005). https://doi.org/10.1529/biophysj.105.061994
Harjanto, D., Maffei, J.S., Zaman, M.H.: Quantitative analysis of the effect of cancer invasiveness and collagen concentration on 3D matrix remodeling. PLoS ONE 6, e24891 (2011). https://doi.org/10.1371/journal.pone.0024891
Carey, S.P., Kraning-Rush, C.M., Williams, R.M., Reinhart-King, C.A.: Biophysical control of invasive tumor cell behavior by extracellular matrix microarchitecture. Biomaterials 33, 4157–4165 (2012). https://doi.org/10.1016/j.biomaterials.2012.02.029
Zoumi, A., Yeh, A., Tromberg, B.J.: Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence. Proc. Natl. Acad. Sci. 99, 11014–11019 (2002). https://doi.org/10.1073/pnas.172368799
Georgakoudi, I., Quinn, K.P.: Optical imaging using endogenous contrast to assess metabolic state. Annu. Rev. Biomed. Eng. 14, 351–367 (2012). https://doi.org/10.1146/annurev-bioeng-071811-150108
Brown, E., McKee, T., diTomaso, E., Pluen, A., Seed, B., Boucher, Y., Jain, R.K.: Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation. Nat. Med. 9, 796 (2003)
Nadiarnykh, O., LaComb, R.B., Brewer, M.A., Campagnola, P.J.: Alterations of the extracellular matrix in ovarian cancer studied by Second Harmonic Generation imaging microscopy. BMC Cancer 10, 94 (2010)
Jawerth, L.M., Münster, S., Vader, D.A., Fabry, B., Weitz, D.A.: A blind spot in confocal reflection microscopy: the dependence of fiber brightness on fiber orientation in imaging biopolymer networks. Biophys. J. 98, L1–L3 (2010). https://doi.org/10.1016/j.bpj.2009.09.065
Raub, C.B., Tromberg, B.J., George, S.C.: Second-Harmonic Generation imaging of self-assembled collagen gels. In: Pavone, F.S., Campagnola, P.J. (eds.) Second Harmonic Generation imaging. pp. 11, 1–27. CRC Press, Boca Raton, FL (2013)
Rezakhaniha, R., Agianniotis, A., Schrauwen, J.T.C., Griffa, A., Sage, D., Bouten, C.V.C., van de Vosse, F.N., Unser, M., Stergiopulos, N.: Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy. Biomech. Model. Mechanobiol. 11, 461–473 (2012). https://doi.org/10.1007/s10237-011-0325-z
Sun, M., Bloom, A.B., Zaman, M.H.: Rapid quantification of 3D collagen fiber alignment and fiber intersection correlations with high sensitivity. PLoS ONE 10, e0131814 (2015). https://doi.org/10.1371/journal.pone.0131814
Liu, Z., Quinn, K.P., Speroni, L., Arendt, L., Kuperwasser, C., Sonnenschein, C., Soto, A.M., Georgakoudi, I.: Rapid three-dimensional quantification of voxel-wise collagen fiber orientation. Biomed. Opt. Express. 6, 2294 (2015). https://doi.org/10.1364/BOE.6.002294
Liu, Z., Pouli, D., Sood, D., Sundarakrishnan, A., Hui Mingalone, C.K., Arendt, L.M., Alonzo, C., Quinn, K.P., Kuperwasser, C., Zeng, L., Schnelldorfer, T., Kaplan, D.L., Georgakoudi, I.: Automated quantification of three-dimensional organization of fiber-like structures in biological tissues. Biomaterials 116, 34–47 (2017). https://doi.org/10.1016/j.biomaterials.2016.11.041
Hotaling, N.A., Bharti, K., Kriel, H., Simon, C.G.: DiameterJ: a validated open source nanofiber diameter measurement tool. Biomaterials 61, 327–338 (2015). https://doi.org/10.1016/j.biomaterials.2015.05.015
Stein, A.M., Vader, D.A., Jawerth, L.M., Weitz, D.A., Sander, L.M.: An algorithm for extracting the network geometry of three-dimensional collagen gels. J. Microsc. 232, 463–475 (2008). https://doi.org/10.1111/j.1365-2818.2008.02141.x
Bredfeldt, J.S., Liu, Y., Pehlke, C.A., Conklin, M.W., Szulczewski, J.M., Inman, D.R., Keely, P.J., Nowak, R.D., Mackie, T.R., Eliceiri, K.W.: Computational segmentation of collagen fibers from second-harmonic generation images of breast cancer. J. Biomed. Opt. 19, 016007 (2014). https://doi.org/10.1117/1.JBO.19.1.016007
Liu, Y., Keikhosravi, A., Mehta, G.S., Drifka, C.R., Eliceiri, K.W.: Methods for quantifying fibrillar collagen alignment. In: Rittié, L. (ed.) Fibrosis, pp. 429–451. Springer, New York (2017)
Sun, Y.-L., Luo, Z.-P., Fertala, A., An, K.-N.: Direct quantification of the flexibility of type I collagen monomer. Biochem. Biophys. Res. Commun. 295, 382–386 (2002). https://doi.org/10.1016/S0006-291X(02)00685-X
Sun, Y.-L., Luo, Z.-P., Fertala, A., An, K.-N.: Stretching type II collagen with optical tweezers. J. Biomech. 37, 1665–1669 (2004). https://doi.org/10.1016/j.jbiomech.2004.02.028
An, K.-N., Sun, Y.-L., Luo, Z.-P.: Flexibility of type I collagen and mechanical property of connective tissue. Biorheology 41, 239–246 (2004)
Bozec, L., van der Heijden, G., Horton, M.: Collagen fibrils: nanoscale ropes. Biophys. J. 92, 70–75 (2007). https://doi.org/10.1529/biophysj.106.085704
Graham, J.S., Vomund, A.N., Phillips, C.L., Grandbois, M.: Structural changes in human type I collagen fibrils investigated by force spectroscopy. Exp. Cell Res. 299, 335–342 (2004). https://doi.org/10.1016/j.yexcr.2004.05.022
van der Rijt, J.A.J., van der Werf, K.O., Bennink, M.L., Dijkstra, P.J., Feijen, J.: Micromechanical testing of individual collagen fibrils. Macromol. Biosci. 6, 697–702 (2006). https://doi.org/10.1002/mabi.200600063
Yang, L., van der Werf, K.O., Dijkstra, P.J., Feijen, J., Bennink, M.L.: Micromechanical analysis of native and cross-linked collagen type I fibrils supports the existence of microfibrils. J. Mech. Behav. Biomed. Mater. 6, 148–158 (2012). https://doi.org/10.1016/j.jmbbm.2011.11.008
Yang, L., van der Werf, K.O., Koopman, B.F.J.M., Subramaniam, V., Bennink, M.L., Dijkstra, P.J., Feijen, J.: Micromechanical bending of single collagen fibrils using atomic force microscopy. J. Biomed. Mater. Res. Part A 82A, 160–168 (2007). https://doi.org/10.1002/jbm.a.31127
Yang, L., van der Werf, K.O., Fitié, C.F.C., Bennink, M.L., Dijkstra, P.J., Feijen, J.: Mechanical properties of native and cross-linked type I collagen fibrils. Biophys. J. 94, 2204–2211 (2008). https://doi.org/10.1529/biophysj.107.111013
Andriotis, O.G., Desissaire, S., Thurner, P.J.: Collagen fibrils: nature’s highly tunable nonlinear springs. ACS Nano 12, 3671–3680 (2018). https://doi.org/10.1021/acsnano.8b00837
Eppell, S., Smith, B., Kahn, H., Ballarini, R.: Nano measurements with micro-devices: mechanical properties of hydrated collagen fibrils. J. R. Soc. Interface 3, 117–121 (2006). https://doi.org/10.1098/rsif.2005.0100
Shen, Z.L., Dodge, M.R., Kahn, H., Ballarini, R., Eppell, S.J.: Stress-strain experiments on individual collagen fibrils. Biophys. J. 95, 3956–3963 (2008). https://doi.org/10.1529/biophysj.107.124602
Shen, Z.L., Dodge, M.R., Kahn, H., Ballarini, R., Eppell, S.J.: In vitro fracture testing of submicron diameter collagen fibril specimens. Biophys. J. 99, 1986–1995 (2010). https://doi.org/10.1016/j.bpj.2010.07.021
Liu, Y., Ballarini, R., Eppell, S.J.: Tension tests on mammalian collagen fibrils. Interface Focus. 6, 20150080 (2016). https://doi.org/10.1098/rsfs.2015.0080
Liu, J., Das, D., Yang, F., Schwartz, A.G., Genin, G.M., Thomopoulos, S., Chasiotis, I.: Energy dissipation in mammalian collagen fibrils: cyclic strain-induced damping, toughening, and strengthening. Acta Biomater. 80, 217–227 (2018). https://doi.org/10.1016/j.actbio.2018.09.027
Shen, Z.L., Kahn, H., Ballarini, R., Eppell, S.J.: Viscoelastic properties of isolated collagen fibrils. Biophys. J. 100, 3008–3015 (2011). https://doi.org/10.1016/j.bpj.2011.04.052
Radmacher, M.: Studying the mechanics of cellular processes by atomic force microscopy. In: Methods in Cell Biology, pp. 347–372. Academic Press (2007)
van Helvert, S., Friedl, P.: Strain stiffening of fibrillar collagen during individual and collective cell migration identified by AFM nanoindentation. ACS Appl. Mater. Interfaces 8, 21946–21955 (2016). https://doi.org/10.1021/acsami.6b01755
Xie, J., Bao, M., Bruekers, S.M.C., Huck, W.T.S.: Collagen gels with different fibrillar microarchitectures elicit different cellular responses. ACS Appl. Mater. Interfaces 9, 19630–19637 (2017). https://doi.org/10.1021/acsami.7b03883
Squires, T.M., Mason, T.G.: Fluid mechanics of microrheology. Annu. Rev. Fluid Mech. 42, 413–438 (2010). https://doi.org/10.1146/annurev-fluid-121108-145608
Wilson, L.G., Poon, W.C.K.: Small-world rheology: an introduction to probe-based active microrheology. Phys. Chem. Chem. Phys. 13, 10617 (2011). https://doi.org/10.1039/c0cp01564d
Velegol, D., Lanni, F.: Cell traction forces on soft biomaterials. I. Microrheology of type I collagen gels. Biophys. J. 81, 1786–1792 (2001). https://doi.org/10.1016/s0006-3495(01)75829-8
Parekh, A., Velegol, D.: Collagen gel anisotropy measured by 2-D laser trap microrheometry. Ann. Biomed. Eng. 35, 1231–1246 (2007). https://doi.org/10.1007/s10439-007-9273-2
Shayegan, M., Forde, N.R.: Microrheological characterization of collagen systems: from molecular solutions to fibrillar gels. PLoS ONE 8, e70590 (2013). https://doi.org/10.1371/journal.pone.0070590
Jones, C.A.R., Cibula, M., Feng, J., Krnacik, E.A., McIntyre, D.H., Levine, H., Sun, B.: Micromechanics of cellularized biopolymer networks. PNAS 112, E5117–E5122 (2015). https://doi.org/10.1073/pnas.1509663112
Staunton, J.R., Vieira, W., Fung, K.L., Lake, R., Devine, A., Tanner, K.: Mechanical properties of the tumor stromal microenvironment probed in vitro and ex vivo by in situ-calibrated optical trap-based active microrheology. Cell. Mol. Bioeng. 9, 398–417 (2016). https://doi.org/10.1007/s12195-016-0460-9
Han, Y.L., Ronceray, P., Xu, G., Malandrino, A., Kamm, R.D., Lenz, M., Broedersz, C.P., Guo, M.: Cell contraction induces long-ranged stress stiffening in the extracellular matrix. Proc. Natl. Acad. Sci. 115, 4075–4080 (2018). https://doi.org/10.1073/pnas.1722619115
Lele, T.P., Sero, J.E., Matthews, B.D., Kumar, S., Xia, S., Montoya‐Zavala, M., Polte, T., Overby, D., Wang, N., Ingber, D.E.: Tools to study cell mechanics and mechanotransduction. In: Methods in Cell Biology, pp. 441–472. Academic Press (2007)
Leung, L.Y., Tian, D., Brangwynne, C.P., Weitz, D.A., Tschumperlin, D.J.: A new microrheometric approach reveals individual and cooperative roles for TGF-β1 and IL-1β in fibroblast-mediated stiffening of collagen gels. FASEB J. 21, 2064–2073 (2007). https://doi.org/10.1096/fj.06-7510com
Fabry, B., Maksym, G.N., Shore, S.A., Moore, P.E., Panettieri Jr., R.A., Butler, J.P., Fredberg, J.J.: Time course and heterogeneity of contractile responses in cultured human airway smooth muscle cells. J. Appl. Physiol. 91, 986–994 (2001). https://doi.org/10.1152/jappl.2001.91.2.986
Li, H., Xu, B., Zhou, E.H., Sunyer, R., Zhang, Y.: Multiscale measurements of the mechanical properties of collagen matrix. ACS Biomater. Sci. Eng. 3, 2815–2824 (2017). https://doi.org/10.1021/acsbiomaterials.6b00634
Steinwachs, J., Metzner, C., Skodzek, K., Lang, N., Thievessen, I., Mark, C., Münster, S., Aifantis, K.E., Fabry, B.: Three-dimensional force microscopy of cells in biopolymer networks. Nat. Meth. Advance online publication (2015). https://doi.org/10.1038/nmeth.3685
Valentine, M.T., Perlman, Z.E., Gardel, M.L., Shin, J.H., Matsudaira, P., Mitchison, T.J., Weitz, D.A.: Colloid surface chemistry critically affects multiple particle tracking measurements of biomaterials. Biophys. J. 86, 4004–4014 (2004). https://doi.org/10.1529/biophysj.103.037812
Janmey, P.A., Georges, P.C., Hvidt, S.: Basic rheology for biologists. In: Methods in Cell Biology, pp. 1–27. Academic Press (2007)
Yang, Y., Kaufman, L.J.: Rheology and confocal reflectance microscopy as probes of mechanical properties and structure during collagen and collagen/hyaluronan self-assembly. Biophys. J. 96, 1566–1585 (2009). https://doi.org/10.1016/j.bpj.2008.10.063
Yang, Y., Leone, L.M., Kaufman, L.J.: Elastic moduli of collagen gels can be predicted from two-dimensional confocal microscopy. Biophys. J. 97, 2051–2060 (2009). https://doi.org/10.1016/j.bpj.2009.07.035
Tran-Ba, K.-H., Lee, D.J., Zhu, J., Paeng, K., Kaufman, L.J.: Confocal rheology probes the structure and mechanics of collagen through the sol-gel transition. Biophys. J. 113, 1882–1892 (2017). https://doi.org/10.1016/j.bpj.2017.08.025
Motte, S., Kaufman, L.J.: Strain stiffening in collagen I networks. Biopolymers 99, 35–46 (2013). https://doi.org/10.1002/bip.22133
Janmey, P.A., McCormick, M.E., Rammensee, S., Leight, J.L., Georges, P.C., MacKintosh, F.C.: Negative normal stress in semiflexible biopolymer gels. Nat. Mater. 6, 48–51 (2007). https://doi.org/10.1038/nmat1810
Unterberger, M.J., Holzapfel, G.A.: Advances in the mechanical modeling of filamentous actin and its cross-linked networks on multiple scales. Biomech. Model. Mechanobiol. 13, 1155–1174 (2014). https://doi.org/10.1007/s10237-014-0578-4
Wen, Q., Basu, A., Janmey, P.A., Yodh, A.G.: Non-affine deformations in polymer hydrogels. Soft Matter 8, 8039 (2012). https://doi.org/10.1039/c2sm25364j
Munster, S., Jawerth, L.M., Leslie, B.A., Weitz, J.I., Fabry, B., Weitz, D.A.: Strain history dependence of the nonlinear stress response of fibrin and collagen networks. Proc. Natl. Acad. Sci. 110, 12197–12202 (2013). https://doi.org/10.1073/pnas.1222787110
Kim, O.V., Litvinov, R.I., Weisel, J.W., Alber, M.S.: Structural basis for the nonlinear mechanics of fibrin networks under compression. Biomaterials 35, 6739–6749 (2014). https://doi.org/10.1016/j.biomaterials.2014.04.056
Kim, O.V., Litvinov, R.I., Chen, J., Chen, D.Z., Weisel, J.W., Alber, M.S.: Compression-induced structural and mechanical changes of fibrin-collagen composites. Matrix Biol. 60–61, 141–156 (2017). https://doi.org/10.1016/j.matbio.2016.10.007
van Oosten, A.S.G., Vahabi, M., Licup, A.J., Sharma, A., Galie, P.A., MacKintosh, F.C., Janmey, P.A.: Uncoupling shear and uniaxial elastic moduli of semiflexible biopolymer networks: compression-softening and stretch-stiffening. Sci. Rep. 6, 19270 (2016). https://doi.org/10.1038/srep19270
Xu, B., Chow, M.-J., Zhang, Y.: Experimental and modeling study of collagen scaffolds with the effects of crosslinking and fiber alignment. Int. J. Biomater. 2011, 1–12 (2011). https://doi.org/10.1155/2011/172389
Voytik-Harbin, S.L., Roeder, B.A., Sturgis, J.E., Kokini, K., Robinson, J.P.: Simultaneous mechanical loading and confocal reflection microscopy for three-dimensional microbiomechanical analysis of biomaterials and tissue constructs. Microsc. Microanal. 9, 74–85 (2003). https://doi.org/10.1017/S1431927603030046
Roeder, B.A.: Local, three-dimensional strain measurements within largely deformed extracellular matrix constructs. J. Biomech. Eng. 126, 699 (2005). https://doi.org/10.1115/1.1824127
Roeder, B.A., Kokini, K., Voytik-Harbin, S.L.: Fibril microstructure affects strain transmission within collagen extracellular matrices. J. Biomech. Eng. 131, 031004 (2009). https://doi.org/10.1115/1.3005331
Knezevic, V., Sim, A.J., Borg, T.K., Holmes, J.W.: Isotonic biaxial loading of fibroblast-populated collagen gels: a versatile, low-cost system for the study of mechanobiology. Biomech. Model. Mechanobiol. 1, 59–67 (2002). https://doi.org/10.1007/s10237-002-0005-0
Thomopoulos, S., Fomovsky, G.M., Holmes, J.W.: The development of structural and mechanical anisotropy in fibroblast populated collagen gels. J. Biomech. Eng. 127, 742 (2005). https://doi.org/10.1115/1.1992525
Thomopoulos, S., Fomovsky, G.M., Chandran, P.L., Holmes, J.W.: Collagen fiber alignment does not explain mechanical anisotropy in fibroblast populated collagen gels. J. Biomech. Eng. 129, 642 (2007). https://doi.org/10.1115/1.2768104
Chandran, P.L., Paik, D.C., Holmes, J.W.: Structural mechanism for alteration of collagen gel mechanics by glutaraldehyde crosslinking. Connect. Tissue Res. 53, 285–297 (2012). https://doi.org/10.3109/03008207.2011.640760
Mow, V., Lai, W.: Recent developments in synovial joint biomechanics. SIAM Rev. 22, 275–317 (1980). https://doi.org/10.1137/1022056
Mow, V.C., Kuei, S.C., Lai, W.M., Armstrong, C.G.: Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. J. Biomech. Eng. 102, 73–84 (1980). https://doi.org/10.1115/1.3138202
Kim, O.V., Liang, X., Litvinov, R.I., Weisel, J.W., Alber, M.S., Purohit, P.K.: Foam-like compression behavior of fibrin networks. Biomech. Model. Mechanobiol. 15, 213–228 (2016). https://doi.org/10.1007/s10237-015-0683-z
Ramtani, S., Takahashi-Iñiguez, Y., Helary, C., Geiger, D., Guille, M.M.G.: Mechanical behavior under unconfined compression loadings of dense fibrillar collagen matrices mimetic of living tissues. J. Mech. Med. Biol. 10, 35–55 (2010). https://doi.org/10.1142/S0219519410003290
Lane, B.A., Harmon, K.A., Goodwin, R.L., Yost, M.J., Shazly, T., Eberth, J.F.: Constitutive modeling of compressible type-I collagen hydrogels. Med. Eng. Phys. 53, 39–48 (2018). https://doi.org/10.1016/j.medengphy.2018.01.003
Knapp, D.M., Barocas, V.H., Moon, A.G., Yoo, K., Petzold, L.R., Tranquillo, R.T.: Rheology of reconstituted type I collagen gel in confined compression. J. Rheol. 41, 971–993 (1997). https://doi.org/10.1122/1.550817
Girton, T.S., Barocas, V.H., Tranquillo, R.T.: Confined compression of a tissue-equivalent: collagen fibril and cell alignment in response to anisotropic strain. J. Biomech. Eng. 124, 568 (2002). https://doi.org/10.1115/1.1504099
Chandran, P.L., Barocas, V.H.: Microstructural mechanics of collagen gels in confined compression: poroelasticity, viscoelasticity, and collapse. J. Biomech. Eng. 126, 152 (2004). https://doi.org/10.1115/1.1688774
Nam, S., Hu, K.H., Butte, M.J., Chaudhuri, O.: Strain-enhanced stress relaxation impacts nonlinear elasticity in collagen gels. PNAS. 201523906 (2016). https://doi.org/10.1073/pnas.1523906113
Nam, S., Lee, J., Brownfield, D.G., Chaudhuri, O.: Viscoplasticity enables mechanical remodeling of matrix by cells. Biophys. J. 111, 2296–2308 (2016). https://doi.org/10.1016/j.bpj.2016.10.002
Ban, E., Franklin, J.M., Nam, S., Smith, L.R., Wang, H., Wells, R.G., Chaudhuri, O., Liphardt, J.T., Shenoy, V.B.: Mechanisms of plastic deformation in collagen networks induced by cellular forces. Biophys. J. 114, 450–461 (2018). https://doi.org/10.1016/j.bpj.2017.11.3739
Xu, B., Li, H., Zhang, Y.: Understanding the viscoelastic behavior of collagen matrices through relaxation time distribution spectrum. Biomatter 3, e24651 (2013). https://doi.org/10.4161/biom.24651
Xu, B., Li, H., Zhang, Y.: An experimental and modeling study of the viscoelastic behavior of collagen gel. J. Biomech. Eng. 135, 054501 (2013). https://doi.org/10.1115/1.4024131
Pryse, K.M., Nekouzadeh, A., Genin, G.M., Elson, E.L., Zahalak, G.I.: Incremental mechanics of collagen gels: new experiments and a new viscoelastic model. Ann. Biomed. Eng. 31, 1287–1296 (2003). https://doi.org/10.1114/1.1615571
Bustamante, C., Marko, J.F., Siggia, E.D., Smith, S.: Entropic elasticity of lambda-phage DNA. Science 265, 1599–1600 (1994)
Buehler, M.J., Wong, S.Y.: Entropic elasticity controls nanomechanics of single tropocollagen molecules. Biophys. J. 93, 37–43 (2007). https://doi.org/10.1529/biophysj.106.102616
Sivakumar, L., Agarwal, G.: The influence of discoidin domain receptor 2 on the persistence length of collagen type I fibers. Biomaterials 31, 4802–4808 (2010). https://doi.org/10.1016/j.biomaterials.2010.02.070
Varma, S., Orgel, J.P.R.O., Schieber, J.D.: Nanomechanics of type I collagen. Biophys. J. 111, 50–56 (2016). https://doi.org/10.1016/j.bpj.2016.05.038
Buehler, M.J.: Atomistic and continuum modeling of mechanical properties of collagen: elasticity, fracture, and self-assembly. J. Mater. Res. 21, 1947–1961 (2006). https://doi.org/10.1557/jmr.2006.0236
Buehler, M.J.: Nature designs tough collagen: Explaining the nanostructure of collagen fibrils. Proc. Natl. Acad. Sci. 103, 12285–12290 (2006). https://doi.org/10.1073/pnas.0603216103
Buehler, M.J.: Molecular architecture of collagen fibrils: a critical length scale for tough fibrils. Curr. Appl. Phys. 8, 440–442 (2008). https://doi.org/10.1016/j.cap.2007.10.058
Buehler, M.J.: Nanomechanics of collagen fibrils under varying cross-link densities: atomistic and continuum studies. J. Mech. Behav. Biomed. Mater. 1, 59–67 (2008). https://doi.org/10.1016/j.jmbbm.2007.04.001
Tang, Y., Ballarini, R., Buehler, M.J., Eppell, S.J.: Deformation micromechanisms of collagen fibrils under uniaxial tension. J. R. Soc. Interface 7, 839–850 (2010). https://doi.org/10.1098/rsif.2009.0390
Gautieri, A., Vesentini, S., Redaelli, A., Buehler, M.J.: Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. Nano Lett. 11, 757–766 (2011). https://doi.org/10.1021/nl103943u
Gautieri, A., Vesentini, S., Redaelli, A., Buehler, M.J.: Viscoelastic properties of model segments of collagen molecules. Matrix Biol. 31, 141–149 (2012). https://doi.org/10.1016/j.matbio.2011.11.005
Head, D.A., Levine, A.J., MacKintosh, F.C.: Distinct regimes of elastic response and deformation modes of cross-linked cytoskeletal and semiflexible polymer networks. Phys. Rev. E 68, 061907 (2003). https://doi.org/10.1103/physreve.68.061907
Head, D.A., Levine, A.J., MacKintosh, F.C.: Deformation of cross-linked semiflexible polymer networks. Phys. Rev. Lett. 91, 108102 (2003). https://doi.org/10.1103/physrevlett.91.108102
Wilhelm, J., Frey, E.: Elasticity of stiff polymer networks. Phys. Rev. Lett. 91, 108103 (2003). https://doi.org/10.1103/physrevlett.91.108103
Onck, P.R., Koeman, T., van Dillen, T., van der Giessen, E.: Alternative explanation of stiffening in cross-linked semiflexible networks. Phys. Rev. Lett. 95, 178102 (2005). https://doi.org/10.1103/physrevlett.95.178102
Stein, A.M., Vader, D.A., Weitz, D.A., Sander, L.M.: The micromechanics of three-dimensional collagen-I gels. Complexity 16, 22–28 (2011). https://doi.org/10.1002/cplx.20332
Licup, A.J., Münster, S., Sharma, A., Sheinman, M., Jawerth, L.M., Fabry, B., Weitz, D.A., MacKintosh, F.C.: Stress controls the mechanics of collagen networks. Proc. Natl. Acad. Sci. 112, 9573–9578 (2015). https://doi.org/10.1073/pnas.1504258112
Sander, E.A., Stein, A.M., Swickrath, M.J., Barocas, V.H.: Out of many, one: modeling schemes for biopolymer and biofibril networks. In: Dumitrica, T. (ed.) Trends in Computational Nanomechanics: Transcending Length and Time Scales, pp. 557–602. Springer Netherlands, Dordrecht (2010)
Kim, T., Hwang, W., Lee, H., Kamm, R.D.: Computational analysis of viscoelastic properties of crosslinked actin networks. PLoS Comput. Biol. 5, e1000439 (2009). https://doi.org/10.1371/journal.pcbi.1000439
Kim, T., Hwang, W., Kamm, R.D.: Computational analysis of a cross-linked actin-like network. Exp. Mech. 49, 91–104 (2009). https://doi.org/10.1007/s11340-007-9091-3
Wen, Q., Basu, A., Winer, J.P., Yodh, A., Janmey, P.A.: Local and global deformations in a strain-stiffening fibrin gel. New J. Phys. 9, 428 (2007). https://doi.org/10.1088/1367-2630/9/11/428
Fung, Y.C.: Elasticity of soft tissues in simple elongation. Am. J. Physiol. Legacy Content. 213, 1532–1544 (1967)
Ma, X., Schickel, M.E., Stevenson, M.D., Sarang-Sieminski, A.L., Gooch, K.J., Ghadiali, S.N., Hart, R.T.: Fibers in the extracellular matrix enable long-range stress transmission between cells. Biophys. J. 104, 1410–1418 (2013). https://doi.org/10.1016/j.bpj.2013.02.017
Abhilash, A.S., Baker, B.M., Trappmann, B., Chen, C.S., Shenoy, V.B.: Remodeling of fibrous extracellular matrices by contractile cells: predictions from discrete fiber network simulations. Biophys. J. 107, 1829–1840 (2014). https://doi.org/10.1016/j.bpj.2014.08.029
Notbohm, J., Lesman, A., Rosakis, P., Tirrell, D.A., Ravichandran, G.: Microbuckling of fibrin provides a mechanism for cell mechanosensing. J. R. Soc. Interface 12, 20150320 (2015). https://doi.org/10.1098/rsif.2015.0320
Holzapfel, G.A.: Nonlinear Solid Mechanics: A Continuum Approach for Engineering. Wiley, Chichester; New York (2000)
Wang, H., Abhilash, A.S., Chen, C.S., Wells, R.G., Shenoy, V.B.: Long-range force transmission in fibrous matrices enabled by tension-driven alignment of fibers. Biophys. J. 107, 2592–2603 (2014). https://doi.org/10.1016/j.bpj.2014.09.044
Stylianopoulos, T., Barocas, V.H.: Volume-averaging theory for the study of the mechanics of collagen networks. Comput. Methods Appl. Mech. Eng. 196, 2981–2990 (2007). https://doi.org/10.1016/j.cma.2006.06.019
Storm, C., Pastore, J.J., MacKintosh, F.C., Lubensky, T.C., Janmey, P.A.: Nonlinear elasticity in biological gels. Nature 435, 191–194 (2005). https://doi.org/10.1038/nature03521
MacKintosh, F.C., Käs, J., Janmey, P.A.: Elasticity of semiflexible biopolymer networks. Phys. Rev. Lett. 75, 4425–4428 (1995). https://doi.org/10.1103/PhysRevLett.75.4425
Liu, H., Sun, W.: Computational efficiency of numerical approximations of tangent moduli for finite element implementation of a fiber-reinforced hyperelastic material model. Comput. Methods Biomech. Biomed. Eng. 19, 1171–1180 (2016). https://doi.org/10.1080/10255842.2015.1118467
Brown, A.E.X., Litvinov, R.I., Discher, D.E., Purohit, P.K., Weisel, J.W.: Multiscale mechanics of fibrin polymer: gel stretching with protein unfolding and loss of water. Science 325(5941), 741–744 (2009)
Truesdell, C.: Remarks on hypo-elasticity. J. Res. Natl. Bur. Stand. Sect. B Math. Math. Phys. 67, 141 (1963). https://doi.org/10.6028/jres.067b.011
Morin, C., Avril, S., Hellmich, C.: The fiber reorientation problem revisited in the context of Eshelbian micromechanics: theory and computations: the fiber reorientation problem revisited in the context of Eshelbian micromechanics: theory and computations. PAMM 15, 39–42 (2015). https://doi.org/10.1002/pamm.201510011
Morin, C., Avril, S., Hellmich, C.: Non-affine fiber kinematics in arterial mechanics: a continuum micromechanical investigation. ZAMM J. Appl. Math. Mech./Z. Angew. Math. Mech. 98, 2101–2121 (2018). https://doi.org/10.1002/zamm.201700360
Fung, Y.C.: Biomechanics: Mechanical Properties of Living Tissues. Springer, New York (1993)
Humphrey, J.D., O’Rourke, S.L.: An Introduction to Biomechanics: Solids and Fluids, Analysis and Design. Springer, New York (2015)
Polacheck, W.J., Charest, J.L., Kamm, R.D.: Interstitial flow influences direction of tumor cell migration through competing mechanisms. PNAS 108, 11115–11120 (2011). https://doi.org/10.1073/pnas.1103581108
Malandrino, A., Moeendarbary, E.: Poroelasticity of living tissues. In: Reference Module in Biomedical Sciences. Elsevier (2017)
Ateshian, G.A.: Mixture theory for modeling biological tissues: illustrations from articular cartilage. In: Holzapfel, G.A., Ogden, R.W. (eds.) Biomechanics: Trends in Modeling and Simulation, pp. 1–51. Springer International Publishing, Cham (2017)
Busby, G.A., Grant, M.H., MacKay, S.P., Riches, P.E.: Confined compression of collagen hydrogels. J. Biomech. 46, 837–840 (2013). https://doi.org/10.1016/j.jbiomech.2012.11.048
Lai, W.M., Mow, V.C.: Drag-induced compression of articular cartilage during a permeation experiment. Biorheology 17, 111–123 (1980)
Holmes, M.H.: Finite deformation of soft tissue: analysis of a mixture model in uni-axial compression. J. Biomech. Eng. 108, 372–381 (1986). https://doi.org/10.1115/1.3138633
Kwan, M.K., Lai, W.M., Mow, V.C.: A finite deformation theory for cartilage and other soft hydrated connective tissues—I. Equilibrium results. J. Biomech. 23, 145–155 (1990). https://doi.org/10.1016/0021-9290(90)90348-7
Setton, L.A., Zhu, W., Mow, V.C.: The biphasic poroviscoelastic behavior of articular cartilage: role of the surface zone in governing the compressive behavior. J. Biomech. 26, 581–592 (1993). https://doi.org/10.1016/0021-9290(93)90019-B
Dembo, M., Oliver, T., Ishihara, A., Jacobson, K.: Imaging the traction stresses exerted by locomoting cells with the elastic substratum method. Biophys. J. 70, 2008–2022 (1996). https://doi.org/10.1016/S0006-3495(96)79767-9
Hall, M.S., Long, R., Feng, X., Huang, Y., Hui, C.-Y., Wu, M.: Toward single cell traction microscopy within 3D collagen matrices. Exp. Cell Res. 319, 2396–2408 (2013). https://doi.org/10.1016/j.yexcr.2013.06.009
Hall, M.S., Alisafaei, F., Ban, E., Feng, X., Hui, C.-Y., Shenoy, V.B., Wu, M.: Fibrous nonlinear elasticity enables positive mechanical feedback between cells and ECMs. PNAS 113, 14043–14048 (2016). https://doi.org/10.1073/pnas.1613058113
Wisdom, K.M., Adebowale, K., Chang, J., Lee, J.Y., Nam, S., Desai, R., Rossen, N.S., Rafat, M., West, R.B., Hodgson, L., Chaudhuri, O.: Matrix mechanical plasticity regulates cancer cell migration through confining microenvironments. Nat. Commun. 9, 4144 (2018). https://doi.org/10.1038/s41467-018-06641-z
Stout, D.A., Bar-Kochba, E., Estrada, J.B., Toyjanova, J., Kesari, H., Reichner, J.S., Franck, C.: Mean deformation metrics for quantifying 3D cell–matrix interactions without requiring information about matrix material properties. Proc. Natl. Acad. Sci. 113, 2898–2903 (2016). https://doi.org/10.1073/pnas.1510935113
Gjorevski, N., Nelson, C.M.: Mapping of mechanical strains and stresses around quiescent engineered three-dimensional epithelial tissues. Biophys. J. 103, 152–162 (2012). https://doi.org/10.1016/j.bpj.2012.05.048
Acknowledgements
The authors gratefully acknowledge the funding agencies that supported this work: National Institute of Health grants U01 CA202123 (MHZ) and R01 HL098028 (YZ), National Science Foundation grants CMMI 1463390 and CAREER 0954825 (YZ), and Department of Defense grant W81XWH-15-1-0070 (DR).
Conflicts of Interest None.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Ferruzzi, J., Zhang, Y., Roblyer, D., Zaman, M.H. (2020). Multi-scale Mechanics of Collagen Networks: Biomechanical Basis of Matrix Remodeling in Cancer. In: Zhang, Y. (eds) Multi-scale Extracellular Matrix Mechanics and Mechanobiology. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-030-20182-1_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-20182-1_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-20181-4
Online ISBN: 978-3-030-20182-1
eBook Packages: EngineeringEngineering (R0)