Skip to main content

On the Dynamics of a Ball Rolling on a Tipping Plane

  • 70 Accesses

Part of the Mechanisms and Machine Science book series (Mechan. Machine Science,volume 73)

Abstract

The model of a ball rolling on an inclined plane is derived using screw theory and Lie algebra. The plane is supported by a gimbal and the inclination can be controlled in two orthogonal directions. The model includes effects due gravity, Coriolis and centripetal torques. Keywords: screw theory; Lie algebra; dynamic model; ball rolling on plane; control, simulation.

Keywords

  • screw theory
  • Lie algebra
  • dynamic model
  • ball rolling on plane
  • control
  • simulation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-20131-9_194
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   709.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-20131-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   899.99
Price excludes VAT (USA)
Hardcover Book
USD   899.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrachev, A.A., Sachkov, Y.L.: An intrinsic approach to the control of rolling bodies. In: Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304), vol. 1, pp. 431–435 (1999)

    Google Scholar 

  2. Byrnes, C., Isidori, A., Willems, J.: Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems. IEEE Transactions on Automatic Control 36(11), 1228–1240 (1991)

    Google Scholar 

  3. Craig, J.J.: Introduction to robotics : mechanics and control, 3rd edn. Pearson, Upper Saddle River (2004)

    Google Scholar 

  4. Goldstein, H., Charles P. Poole, J., Safko, J.L.: Classical mechanics. Addison-Wesley, San Francisco (2000)

    Google Scholar 

  5. Khalil, H.K.: Nonlinear systems, 3rd edn. Prentice Hall, Upper Saddle River (2001)

    Google Scholar 

  6. Laus, L.P., Moreno, U.F., de Pieri, E.R., de Bona Castelan Neto, E.: Passivity based control of a 3D overhead crane. In: Proceedings of COBEM 2009. ABCM, Brazilian Society of Mechanical Sciences and Engineering, Gramado (2009)

    Google Scholar 

  7. Lemos, N.A.: Analytical mechanics. Cambridge, Cambridge (2018). DOI https://doi.org/10.1017/9781108241489. URL https://www.cambridge.org/9781108416580

  8. Park, J.H., Lee, Y.J.: Robust visual servoing for motion control of the ball on a plate. Mechatronics 13(7), 723–738 (2003)

    Google Scholar 

  9. Selig, J.M.: Geometric fundamentals of robotics, 2nd edn. Monographs in Computer Science. Springer (2005)

    Google Scholar 

  10. Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G.: Robotics : modelling, planning and control. Advanced Textbooks in Control and Signal Processing. Springer, London (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Laus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Laus, L.P., Selig, J.M. (2019). On the Dynamics of a Ball Rolling on a Tipping Plane. In: Uhl, T. (eds) Advances in Mechanism and Machine Science. IFToMM WC 2019. Mechanisms and Machine Science, vol 73. Springer, Cham. https://doi.org/10.1007/978-3-030-20131-9_194

Download citation