Skip to main content

Influence of hinge positioning on human joint torque in industrial trunk exoskeleton

  • Conference paper
  • First Online:
Advances in Mechanism and Machine Science (IFToMM WC 2019)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 73))

Included in the following conference series:

Abstract

This paper deals with the problem of human efforts reduction in manual handling and lifting tasks for industry. Recent studies pointed out that more than 50% of workers suffer from low back pain. In these cases, a human assistance could be useful for increasing the quality of life. In this paper, a conceptual investigation on human body with a wearable exoskeleton for assistance is presented. A 3D human multibody model has been developed and its behaviour has been validated with the human one in manual handling and lifting tasks loads. The presented study demonstrates how the motion behaviour of a 3D human model with two joints between legs and trunk, instead of one, helps a human-like comparison between human and model. In particular, the important results of this paper underline how the human torques may be appropriately reduced modifying the position of exoskeleton’s joints. The output of the research are important for the conceptual exoskeletons design conceived for human assistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Parent-Thirion, A., Biletta, I., Cabrita, J., Vargas Llave, O., Vermeylen, G., Wilczynska, A., & Wilkens, M.: Sixth European Working Conditions Survey – Overview report (2017 update) | European Foundation for Improvement of Living and Working Conditions. (2016).

    Google Scholar 

  2. De Looze, M.P., Bosch, T., Krause, F., Stadler, K.S., O’Sullivan, L.W.: Exoskeletons for industrial application and their potential effects on physical work load. Ergonomics. 59, 671–681 (2016). https://doi.org/10.1080/00140139.2015.1081988

    Article  Google Scholar 

  3. Gopura, R.A.R.C., Kiguchi, K., Bandara, D.S.V.: A brief review on upper extremity robotic exoskeleton systems. In: 2011 6th International Conference on Industrial and Information Systems, ICIIS 2011 - Conference Proceedings. pp. 346–351. IEEE (2011)

    Google Scholar 

  4. http://en.laevo.nl/, accessed 2018/11/21.

  5. https://www.suitx.com/backx, accessed 2018/11/21

  6. http://www.levitatetech.com/, accessed 2018/11/21

  7. Abdoli-E, M., Agnew, M.J., Stevenson, J.M.: An on-body personal lift augmentation device (PLAD) reduces EMG amplitude of erector spinae during lifting tasks. Clin. Biomech. 21, 456–465 (2006). https://doi.org/10.1016/j.clinbiomech.2005.12.021

    Article  Google Scholar 

  8. Ko, H.K., Lee, S.W., Koo, D.H., Lee, I., Hyun, D.J.: Waist-assistive exoskeleton powered by a singular actuation mechanism for prevention of back-injury. Rob. Auton. Syst. 107, 1–9 (2018). https://doi.org/10.1016/j.robot.2018.05.008

    Article  Google Scholar 

  9. Miura, K., Kadone, H., Koda, M., Abe, T., Endo, H., Murakami, H., Doita, M., Kumagai, H., Nagashima, K., Fujii, K., Noguchi, H., Funayama, T., Kawamoto, H., Sankai, Y., Yamazaki, M.: The hybrid assisted limb (HAL) for Care Support, a motion assisting robot providing exoskeletal lumbar support, can potentially reduce lumbar load in repetitive snow-shoveling movements. J. Clin. Neurosci. 49, 83–86 (2018). https://doi.org/10.1016/j.jocn.2017.11.020

    Article  Google Scholar 

  10. Spada, S., Ghibaudo, L., Gilotta, S., Gastaldi, L., Cavatorta, M.P.: Analysis of Exoskeleton introduction in industrial reality: main issues and EAWS risk assessment. In: Int. Conf. on Applied Human Factors and Ergonomics. pp. 236–244. Springer, Cham (2018)

    Google Scholar 

  11. Bosch, T., van Eck, J., Knitel, K., de Looze, M.: The effects of a passive exoskeleton on muscle activity, discomfort and endurance time in forward bending work. Appl. Ergon. 54, 212–217 (2016). https://doi.org/10.1016/j.apergo.2015.12.003

    Article  Google Scholar 

  12. Spada, S., Ghibaudo, L., Carnazzo, C., Gastaldi, L., Cavatorta, M.P.: Passive Upper Limb Exoskeletons: An Experimental Campaign with Workers. Adv. Intell. Syst. Comput. 230–239 (2019). https://doi.org/10.1007/978-3-319-96068-5_26

    Google Scholar 

  13. Spada, S., Ghibaudo, L., Carnazzo, C., Di Pardo, M., Chander, D.S., Gastaldi, L., Cavatorta, M.P.: Physical and Virtual Assessment of a Passive Exoskeleton. Adv. Intell. Syst. Comput. 247–257 (2019). https://doi.org/10.1007/978-3-319-96068-5_28

    Google Scholar 

  14. Seth, A., Hicks, J.L., Uchida, T.K., Habib, A., Dembia, C.L., Dunne, J.J., Ong, C.F., DeMers, M.S., Rajagopal, A., Millard, M., Hamner, S.R., Arnold, E.M., Yong, J.R., Lakshmikanth, S.K., Sherman, M.A., Ku, J.P., Delp, S.L.: OpenSim: Simulating musculoskeletal dynamics and neuromuscular control to study human and animal movement. PLOS Comput. Biol. 14, (2018). https://doi.org/10.1371/journal.pcbi.1006223

    Article  Google Scholar 

  15. Bassani, T., Stucovitz, E., Qian, Z., Briguglio, M., Galbusera, F.: Validation of the AnyBody full body musculoskeletal model in computing lumbar spine loads at L4L5 level. J. Biomech. 58, 89–96 (2017). https://doi.org/10.1016/j.jbiomech.2017.04.025

    Article  Google Scholar 

  16. Luo, Z., Yu, Y.: Wearable stooping-assist device in reducing risk of low back disorders during stooped work. In: 2013 IEEE International Conference on Mechatronics and Automation, IEEE ICMA 2013. pp. 230–236 (2013)

    Google Scholar 

  17. Toxiri, S., Ortiz, J., Masood, J., Fernandez, J., Mateos, L.A., Caldwell, D.G.: A wearable device for reducing spinal loads during lifting tasks: Biomechanics and design concepts. In: 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO). pp. 2295–2300. IEEE (2015)

    Google Scholar 

  18. Millard, M., Sreenivasa, M., Mombaur, K.: Predicting the Motions and Forces of Wearable Robotic Systems Using Optimal Control. In: Frontiers in Robotics and AI. pp. 1–12 (2017)

    Google Scholar 

  19. Mombaur, K., Harant, M., Sreenivasa, M., Millard, M., Sarabon, N.: Parameter optimization for passive spinal exoskeletons based on experimental data and optimal control. In: In Humanoid Robotics (Humanoids), 2017 IEEE-RAS 17th International Conference on. pp. 535–540 (2017)

    Google Scholar 

  20. Wu, G., van der Helm, F.C.T., (DirkJan) Veeger, H.E.J., Makhsous, M., Van Roy, P., Anglin, C., Nagels, J., Karduna, A.R., McQuade, K., Wang, X., Werner, F.W., Buchholz, B.: ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion—Part II: shoulder, elbow, wrist and hand. J. Biomech. 38, 981–992 (2005). https://doi.org/10.1016/j.jbiomech.2004.05.042

    Article  Google Scholar 

  21. Wu, G., Siegler, S., Allard, P., Kirtley, C., Leardini, A., Rosenbaum, D., Whittle, M., D’Lima, D.D., Cristofolini, L., Witte, H., Schmid, O., Stokes, I.: ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine. J. Biomech. 35, 543–548 (2002).

    Article  Google Scholar 

  22. ISO/TR 7250–2: Basic human body measurements for technological design. Part 2: Statistical summaries of body measurements from individual ISO populations (2010).

    Google Scholar 

  23. de Leva, P.: Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters. J. Biomech. 29, 1223–1230 (1996). https://doi.org/10.1016/0021-9290(95)00178-6

    Article  Google Scholar 

  24. Dumas, R., Chèze, L., Verriest, J.-P.: Adjustments to McConville et al. and Young et al. body segment inertial parameters. J. Biomech. 40, 543–553 (2007).

    Google Scholar 

  25. Muscolo, G.G., Caldwell, D., Cannella, F.: Biomechanics of human locomotion with constraints to design flexible-wheeled biped robots. In: 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM). pp. 1273–1278. IEEE (2017)

    Google Scholar 

  26. G. G. Muscolo, D. Caldwell and F. Cannella, Multibody biomechanical analysis of taekwondo athletes. Proceedings of the 8th ECCOMAS Thematic Conference on Multibody Dynamics 2017, MBD 2017 Volume 2017-January, 2017, pp. 799-804.

    Google Scholar 

  27. Hwang, S., Kim, Y., Kim, Y.: Lower extremity joint kinetics and lumbar curvature during squat and stoop lifting. BMC Musculoskelet. Disord. 10, 15 (2009).

    Google Scholar 

  28. Faber, G.S., Kingma, I., van Dieën, J.H.: Bottom-up estimation of joint moments during manual lifting using orientation sensors instead of position sensors. J. Biomech. 43, 1432–1436 (2010). https://doi.org/10.1016/j.jbiomech.2010.01.019

    Article  Google Scholar 

  29. Kingma, I., Baten, C.T.M., Dolan, P., Toussaint, H.M., van Dieën, J.H., de Looze, M.P., Adams, M.A.: Lumbar loading during lifting: a comparative study of three measurement techniques. J. Electromyogr. Kinesiol. 11, 337–345 (2001).

    Article  Google Scholar 

  30. Toxiri, S., Sposito, M., Lazzaroni, M., Mancini, L., Di Pardo, M., Caldwell, D.G., Ortiz, J.: Towards Standard Specifications for Back-Support Exoskeletons. In: International Symposium on Wearable Robotics. pp. 219–223. Springer, Cham (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Panero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Panero, E., Muscolo, G.G., Pastorelli, S., Gastaldi, L. (2019). Influence of hinge positioning on human joint torque in industrial trunk exoskeleton. In: Uhl, T. (eds) Advances in Mechanism and Machine Science. IFToMM WC 2019. Mechanisms and Machine Science, vol 73. Springer, Cham. https://doi.org/10.1007/978-3-030-20131-9_14

Download citation

Publish with us

Policies and ethics