Skip to main content

Literature Review

  • Chapter
  • First Online:
Smart Nitrate Sensor

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 35))

Abstract

There are various detection methods are available for nitrate detection in water. Some of them are laboratory-based methods, some can perform in situ measurement. Some of the detection methods are conventional, some of them are non-conventional methods. All the detection methods are some advantages and drawbacks. The price of the detection methods are also important and needs to consider during measurement. This chapter discusses all the available methods and their characteristics in terms of advantages, limit of detections, detection methods, drawbacks, cost and important features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Andreoli et al., Electrochemical conversion of copper-based hierarchical micro/nanostructures to copper metal nanoparticles and their testing in nitrate sensing. Electroanalysis 23(9), 2164–2173 (2011)

    Article  Google Scholar 

  2. S. Aravamudhan, S. Bhansali, Development of micro-fluidic nitrate-selective sensor based on doped-polypyrrole nanowires. Sens. Actuators B Chem. 132(2), 623–630 (2008)

    Article  Google Scholar 

  3. F. Can, S.K. Ozoner, P. Ergenekon, E. Erhan, Amperometric nitrate biosensor based on carbon nanotube/polypyrrole/nitrate reductase biofilm electrode. Mater. Sci. Eng., C 32(1), 18–23 (2012)

    Article  Google Scholar 

  4. S.S. Hassan, Ion-selective electrodes in organic functional group analysis: Microdetermination of nitrates and nitramines with use of the iodide electrode. Talanta 23(10), 738–740 (1976)

    Article  Google Scholar 

  5. M.O. Mendoza, E.P. Ortega, O.A. de Fuentes, Y. Prokhorov, J.G.L. Barcenas, Chitosan/bentonite nanocomposite: preliminary studies of its potentiometric response to nitrate ions in water, in 2014 IEEE 9th Ibero-American Congress on Sensors (IBERSENSOR) (IEEE, 2014); pp. 1–4

    Google Scholar 

  6. R.K. Mahajan, R. Kaur, H. Miyake, H. Tsukube, Zn (II) complex-based potentiometric sensors for selective determination of nitrate anion. Anal. Chim. Acta 584(1), 89–94 (2007)

    Article  Google Scholar 

  7. C. Li, L. Li, Prediction of nitrate and chlorine in soil using ion selective electrode, in World Automation Congress (WAC) (IEEE, 2010),pp. 231–234

    Google Scholar 

  8. L. Nuñez, X. Cetó, M.I. Pividori, M.V.B. Zanoni, M. Del Valle, Development and application of an electronic tongue for detection and monitoring of nitrate, nitrite and ammonium levels in waters. Microchem. J. 110, 273–279 (2013)

    Article  Google Scholar 

  9. T.A. Bendikov, T.C. Harmon, A sensitive nitrate ion-selective electrode from a pencil lead. An analytical laboratory experiment. J. Chem. Educ. 82(3), 439 (2005)

    Article  Google Scholar 

  10. L. Zhang, M. Zhang, H. Ren, P. Pu, P. Kong, H. Zhao, Comparative investigation on soil nitrate-nitrogen and available potassium measurement capability by using solid-state and PVC ISE. Comput. Electron. Agric. 112, 83–91 (2015)

    Article  Google Scholar 

  11. C. Wardak, Solid Contact Nitrate Ion-Selective Electrode Based on Ionic Liquid with Stable and Reproducible Potential. Electroanalysis 26(4), 864–872 (2014)

    Article  Google Scholar 

  12. A. Calvo-López, E. Arasa-Puig, M. Puyol, J.M. Casalta, J. Alonso-Chamarro, Biparametric potentiometric analytical microsystem for nitrate and potassium monitoring in water recycling processes for manned space missions. Anal. Chim. Acta 804, 190–196 (2013)

    Article  Google Scholar 

  13. S.S. Hassan, H. Sayour, S.S. Al-Mehrezi, A novel planar miniaturized potentiometric sensor for flow injection analysis of nitrates in wastewaters, fertilizers and pharmaceuticals. Anal. Chim. Acta 581(1), 13–18 (2007)

    Article  Google Scholar 

  14. P.T. Kissinger, T.H. Ridgway, Small-amplitude controlled-potential techniques, in Laboratory Techniques in Electroanalytical Chemistry, Revised and Expanded (1996), p. 141

    Chapter  Google Scholar 

  15. R.A. Wallingford, A.G. Ewing, Capillary zone electrophoresis with electrochemical detection. Anal. Chem. 59(14), 1762–1766 (1987)

    Article  Google Scholar 

  16. S. Sloss, A.G. Ewing, Improved method for end-column amperometric detection for capillary electrophoresis. Anal. Chem. 65(5), 577–581 (1993)

    Article  Google Scholar 

  17. J. Wang, Analytical Electrochemistry (Wiley, London, 2006)

    Google Scholar 

  18. T.J. Roussel, D.J. Jackson, R.P. Baldwin, R.S. Keynton, Amperometric Techniques, in Encyclopedia of Microfluidics and Nanofluidics (2013), pp. 1–11, 2013

    Google Scholar 

  19. N.G. Carpenter, D. Pletcher, Amperometric method for the determination of nitrate in water. Anal. Chim. Acta 317(1–3), 287–293 (1995)

    Article  Google Scholar 

  20. X.-L. Zhang, J.-X. Wang, Z. Wang, S.-C. Wang, Improvement of amperometric sensor used for determination of nitrate with polypyrrole nanowires modified electrode. Sensors 5(12), 580–593 (2005)

    Article  Google Scholar 

  21. J.R.C. da Rocha, L. Angnes, M. Bertotti, K. Araki, H.E. Toma, Amperometric detection of nitrite and nitrate at tetraruthenated porphyrin-modified electrodes in a continuous-flow assembly. Anal. Chim. Acta 452(1), 23–28 (2002)

    Article  Google Scholar 

  22. J.E. Newbery, M.P.L. de Haddad, Amperometric determination of nitrite by oxidation at a glassy carbon electrode. Analyst 110(1), 81–82 (1985)

    Article  Google Scholar 

  23. M.A. Stanley et al., Comparison of the analytical capabilities of an amperometric and an optical sensor for the determination of nitrate in river and well water. Anal. Chim. Acta 299(1), 81–90 (1994)

    Article  Google Scholar 

  24. J.C. Gamboa, R.C. Pena, T.R. Paixão, M. Bertotti, A renewable copper electrode as an amperometric flow detector for nitrate determination in mineral water and soft drink samples. Talanta 80(2), 581–585 (2009)

    Article  Google Scholar 

  25. A. Hulanicki, W. Matuszewski, M. Trojanowicz, Flow-injection determination of nitrite and nitrate with biamperometric detection at two platinum wire electrodes. Anal. Chim. Acta 194, 119–127 (1987)

    Article  Google Scholar 

  26. G.A. Sherwood, D.C. Johnson, A chromatographic determination of nitrate with amperometric detection at a copperized cadmium electrode. Anal. Chim. Acta 129, 101–111 (1981)

    Article  Google Scholar 

  27. S.A. Glazier, E.R. Campbell, W.H. Campbell, Construction and characterization of nitrate reductase-based amperometric electrode and nitrate assay of fertilizers and drinking water. Anal. Chem. 70(8), 1511–1515 (1998)

    Article  Google Scholar 

  28. A.Y. Chamsi, A.G. Fogg, Oxidative flow injection amperometric determination of nitrite at an electrochemically pre-treated glassy carbon electrode. Analyst 113(11), 1723–1727 (1988)

    Article  Google Scholar 

  29. M. Bertotti, D. Pletcher, Amperometric determination of nitrite via reaction with iodide using microelectrodes. Anal. Chim. Acta 337(1), 49–55 (1997)

    Article  Google Scholar 

  30. M.A. Alawi, Determination of nitrate and nitrite in water with HPLC and amperometric detection. Fresenius’ J. Anal. Chem. 313(3), 239–240 (1982)

    Article  Google Scholar 

  31. M.E. Bodini, D.T. Sawyer, Voltammetric determination of nitrate ion at parts-per-billion levels. Anal. Chem. 49(3), 485–489 (1977)

    Article  Google Scholar 

  32. R.J. Davenport, D.C. Johnson, Voltammetric determination of nitrate and nitrite ions using a rotating cadmium disk electrode. Anal. Chem. 45(11), 1979–1980 (1973)

    Article  Google Scholar 

  33. J. Krista, M. Kopanica, L. Novotný, Voltammetric determination of nitrates using silver electrodes. Electroanal. Int. J. Fundamental Practical Aspects Electroanal. 12(3), 199–204 (2000)

    Article  Google Scholar 

  34. S.M. Shariar, T. Hinoue, Simultaneous voltammetric determination of nitrate and nitrite ions using a copper electrode pretreated by dissolution/redeposition. Anal. Sci. 26(11), 1173–1179 (2010)

    Article  Google Scholar 

  35. V. Mareček, H. Jänchenová, Z. Samec, M. Březina, Voltammetric determination of nitrate, perchlorate and iodide at a hanging electrolyte drop electrode. Anal. Chim. Acta 185, 359–362 (1986)

    Article  Google Scholar 

  36. C. Neuhold, K. Kalcher, W. Diewald, X. Cai, G. Raber, Voltammetric determination of nitrate with a modified carbon paste electrode. Electroanalysis 6(3), 227–236 (1994)

    Article  Google Scholar 

  37. A.O. Solak, P. Gülser, E. Gökm, F. Gökmesşe, A new differential pulse voltammetric method for the determination of nitrate at a copper plated glassy carbon electrode. Microchim. Acta 134(1–2), 77–82 (2000)

    Article  Google Scholar 

  38. A. Osman Solak, P. Çekirdek, Square wave voltammetric determination of nitrate at a freshly copper plated glassy carbon electrode. Anal. Lett. 38(2), 271–280 (2005)

    Article  Google Scholar 

  39. A. Jang, Z. Zou, K.K. Lee, C.H. Ahn, P.L. Bishop, Potentiometric and voltammetric polymer lab chip sensors for determination of nitrate, pH and Cd (II) in water. Talanta 83(1), 1–8 (2010)

    Article  Google Scholar 

  40. C. Lopez-Moreno, I.V. Perez, A.M. Urbano, Development and validation of an ionic chromatography method for the determination of nitrate, nitrite and chloride in meat. Food Chem. 194, 687–694 (2016)

    Article  Google Scholar 

  41. H. Kodamatani, S. Yamazaki, K. Saito, T. Tomiyasu, Y. Komatsu, Selective determination method for measurement of nitrite and nitrate in water samples using high-performance liquid chromatography with post-column photochemical reaction and chemiluminescence detection. J. Chromatogr. A 1216(15), 3163–3167 (2009)

    Article  Google Scholar 

  42. M.R. Siddiqui, S.M. Wabaidur, Z.A. ALOthman, M. Rafiquee, Rapid and sensitive method for analysis of nitrate in meat samples using ultra performance liquid chromatography–mass spectrometry. Spectrochimica Acta Part A Mol. Biomol. Spectroscopy 151, 861–866 (2015)

    Article  Google Scholar 

  43. P. Niedzielski, I. Kurzyca, J. Siepak, A new tool for inorganic nitrogen speciation study: Simultaneous determination of ammonium ion, nitrite and nitrate by ion chromatography with post-column ammonium derivatization by Nessler reagent and diode-array detection in rain water samples. Anal. Chim. Acta 577(2), 220–224 (2006)

    Article  Google Scholar 

  44. K. Tirumalesh, Simultaneous determination of bromide and nitrate in contaminated waters by ion chromatography using amperometry and absorbance detectors. Talanta 74(5), 1428–1434 (2008)

    Article  Google Scholar 

  45. M. Tabatabai, W. Dick, Simultaneous determination of nitrate, chloride, sulfate, and phosphate in natural waters by ion chromatography 1. J. Environ. Qual. 12(2), 209–213 (1983)

    Article  Google Scholar 

  46. J.A. Morales, L.S. de Graterol, J. Mesa, Determination of chloride, sulfate and nitrate in groundwater samples by ion chromatography. J. Chromatogr. A 884(1–2), 185–190 (2000)

    Article  Google Scholar 

  47. I. Dahllöf, O. Svensson, C. Torstensson, Optimising the determination of nitrate and phosphate in sea water with ion chromatography using experimental design. J. Chromatogr. A 771(1–2), 163–168 (1997)

    Article  Google Scholar 

  48. E. Kapinus, I. Revelsky, V. Ulogov, Y.A. Lyalikov, Simultaneous determination of fluoride, chloride, nitrite, bromide, nitrate, phosphate and sulfate in aqueous solutions at 10–9 to 10–8% level by ion chromatography. J. Chromatogr. B 800(1–2), 321–323 (2004)

    Article  Google Scholar 

  49. M. Neal, C. Neal, H. Wickham, S. Harman, Determination of bromide, chloride, fluoride, nitrate and sulphate by ion chromatography: comparisons of methodologies for rainfall, cloud water and river waters at the Plynlimon catchments of mid-Wales. Hydrol. Earth Syst. Sci. 11(1), 294–300 (2007)

    Article  Google Scholar 

  50. M. Akyüz, Ş. Ata, Determination of low level nitrite and nitrate in biological, food and environmental samples by gas chromatography–mass spectrometry and liquid chromatography with fluorescence detection. Talanta 79(3), 900–904 (2009)

    Article  Google Scholar 

  51. Y. Li, J.S. Whitaker, C.L. McCarty, Reversed-phase liquid chromatography/electrospray ionization/mass spectrometry with isotope dilution for the analysis of nitrate and nitrite in water. J. Chromatogr. A 1218(3), 476–483 (2011)

    Article  Google Scholar 

  52. Y. Zuo, C. Wang, T. Van, Simultaneous determination of nitrite and nitrate in dew, rain, snow and lake water samples by ion-pair high-performance liquid chromatography. Talanta 70(2), 281–285 (2006)

    Article  Google Scholar 

  53. S. Rodriguez-Mozaz, M.J.L. de Alda, D. Barceló, Biosensors as useful tools for environmental analysis and monitoring. Anal. Bioanal. Chem. 386(4), 1025–1041 (2006)

    Article  Google Scholar 

  54. S. Rodriguez-Mozaz, M.J.L. de Alda, D. Barceló, Fast and simultaneous monitoring of organic pollutants in a drinking water treatment plant by a multi-analyte biosensor followed by LC–MS validation. Talanta 69(2), 377–384 (2006)

    Article  Google Scholar 

  55. B. Roig, I. Bazin, S. Bayle, D. Habauzit, J. Chopineau, Biomolecular recognition systems for water monitoring, in Rapid Chemical and Biological Techniques for Water Monitoring (2009), pp. 175–195

    Google Scholar 

  56. M. Farré, L. Kantiani, S. Pérez, D. Barceló, Sensors and biosensors in support of EU Directives. TrAC Trends Anal. Chem. 28(2), 170–185 (2009)

    Article  Google Scholar 

  57. H.-H. Zeng, R.B. Thompson, B.P. Maliwal, G.R. Fones, J.W. Moffett, C.A. Fierke, Real-time determination of picomolar free Cu (II) in seawater using a fluorescence-based fiber optic biosensor. Anal. Chem. 75(24), 6807–6812 (2003)

    Article  Google Scholar 

  58. W. Xuejiang et al., Conductometric nitrate biosensor based on methyl viologen/Nafion®/nitrate reductase interdigitated electrodes. Talanta 69(2), 450–455 (2006)

    Article  Google Scholar 

  59. S. Cosnier, S. Da Silva, D. Shan, K. Gorgy, Electrochemical nitrate biosensor based on poly (pyrrole–viologen) film–nitrate reductase–clay composite. Bioelectrochemistry 74(1), 47–51 (2008)

    Article  Google Scholar 

  60. Z. Zhang et al., A novel nitrite biosensor based on conductometric electrode modified with cytochrome c nitrite reductase composite membrane. Biosens. Bioelectron. 24(6), 1574–1579 (2009)

    Article  Google Scholar 

  61. T. Madasamy, M. Pandiaraj, M. Balamurugan, K. Bhargava, N.K. Sethy, C. Karunakaran, Copper, zinc superoxide dismutase and nitrate reductase coimmobilized bienzymatic biosensor for the simultaneous determination of nitrite and nitrate. Biosens. Bioelectron. 52, 209–215 (2014)

    Article  Google Scholar 

  62. D. Albanese, M. Di Matteo, C. Alessio, Screen printed biosensors for detection of nitrates in drinking water,in Computer Aided Chemical Engineering, vol. 28 (Elsevier, Amsterdam, 2010), pp. 283–288

    Google Scholar 

  63. A. Ayala, L. Leal, L. Ferrer, V. Cerdà, Multiparametric automated system for sulfate, nitrite and nitrate monitoring in drinking water and wastewater based on sequential injection analysis. Microchem. J. 100, 55–60 (2012)

    Article  Google Scholar 

  64. M. Yaqoob, A. Nabi, P.J. Worsfold, Determination of nitrite and nitrate in natural waters using flow injection with spectrophotometric detection. J. Chem. Soc. Pakistan 34(3) (2013)

    Google Scholar 

  65. M. Yaqoob, B. Folgado Biot, A. Nabi, P.J. Worsfold, Determination of nitrate and nitrite in freshwaters using flow-injection with luminol chemiluminescence detection. Luminescence 27(5), 419–425 (2012)

    Article  Google Scholar 

  66. S. Wang, K. Lin, N. Chen, D. Yuan, J. Ma, Automated determination of nitrate plus nitrite in aqueous samples with flow injection analysis using vanadium (III) chloride as reductant. Talanta 146, 744–748 (2016)

    Article  Google Scholar 

  67. C.L. Pasquali, A. Gallego-Picó, P.F. Hernando, M. Velasco, J.D. Alegría, Two rapid and sensitive automated methods for the determination of nitrite and nitrate in soil samples. Microchem. J. 94(1), 79–82 (2010)

    Article  Google Scholar 

  68. C.L. Pasquali, P.F. Hernando, J.D. Alegria, Spectrophotometric simultaneous determination of nitrite, nitrate and ammonium in soils by flow injection analysis. Analytica chimica Acta 600(1–2), 177-182 (2007)

    Article  Google Scholar 

  69. S. Feng, M. Zhang, Y. Huang, D. Yuan, Y. Zhu, Simultaneous determination of nanomolar nitrite and nitrate in seawater using reverse flow injection analysis coupled with a long path length liquid waveguide capillary cell. Talanta 117, 456–462 (2013)

    Article  Google Scholar 

  70. P.S. Ellis, A.M.H. Shabani, B.S. Gentle, I.D. McKelvie, Field measurement of nitrate in marine and estuarine waters with a flow analysis system utilizing on-line zinc reduction. Talanta 84(1), 98–103 (2011)

    Article  Google Scholar 

  71. A.D. Beaton et al., Lab-on-chip measurement of nitrate and nitrite for in situ analysis of natural waters. Environ. Sci. Technol. 46(17), 9548–9556 (2012)

    Article  Google Scholar 

  72. N. Amini, I. McKelvie, An enzymatic flow analysis method for the determination of phosphatidylcholine in sediment pore waters and extracts. Talanta 66(2), 445–452 (2005)

    Article  Google Scholar 

  73. B. Paczosa-Bator, L. Cabaj, M. Raś, B. Baś, R. Piech, Potentiometric sensor platform based on a carbon black modified electrodes. Int. J. Electrochem. Sci. 9, 2816–2823 (2014)

    Google Scholar 

  74. E. Lindner, B.D. Pendley, A tutorial on the application of ion-selective electrode potentiometry: an analytical method with unique qualities, unexplored opportunities and potential pitfalls; Tutorial. Anal. Chim. Acta 762, 1–13 (2013)

    Article  Google Scholar 

  75. A. Stortini, L. Moretto, A. Mardegan, M. Ongaro, P. Ugo, Arrays of copper nanowire electrodes: Preparation, characterization and application as nitrate sensor. Sens. Actuators B Chem. 207, 186–192 (2015)

    Article  Google Scholar 

  76. L.T. Duarte, C. Jutten, S. Moussaoui, A Bayesian nonlinear source separation method for smart ion-selective electrode arrays. IEEE Sens. J. 9(12), 1763–1771 (2009)

    Article  Google Scholar 

  77. P. Ciosek, W. Wróblewski, Potentiometric electronic tongues for foodstuff and biosample recognition—An overview. Sensors 11(5), 4688–4701 (2011)

    Article  Google Scholar 

  78. T. Öznülüer, B. Özdurak, H.Ö. Doğan, Electrochemical reduction of nitrate on graphene modified copper electrodes in alkaline media. J. Electroanal. Chem. 699, 1–5 (2013)

    Article  Google Scholar 

  79. Z. Chang, Y. Zhu, L. Zhang, S. Du, Measurement experiment and mathematical model of nitrate ion selective electrode, in 2013 Third International Conference on Instrumentation, Measurement, Computer, Communication and Control (IMCCC) (IEEE, 2013), pp. 48–52

    Google Scholar 

  80. M.A.M. Yunus, S. Ibrahim, W.A.H. Altowayti, G.P. San, S.C. Mukhopadhyay, Selective membrane for detecting nitrate based on planar electromagnetic sensors array, in 2015 10th AsianControl Conference (ASCC) (IEEE, 2015), pp. 1–6

    Google Scholar 

  81. M.A.M. Yunus, S.C. Mukhopadhyay, Novel planar electromagnetic sensors for detection of nitrates and contamination in natural water sources. IEEE Sens. J. 11(6), 1440–1447 (2011)

    Article  Google Scholar 

  82. A.S.M. Nor, M.A.M. Yunus, S.W. Nawawi, S. Ibrahim, Low-cost sensor array design optimization based on planar electromagnetic sensor design for detecting nitrate and sulphate,” in 2013 Seventh International Conference on Sensing Technology (ICST) (IEEE, 2013), pp. 693–698

    Google Scholar 

  83. M.A.M. Yunus, S. Mukhopadhyay, A. Punchihewa, Application of independent component analysis for estimating nitrate contamination in natural water sources using planar electromagnetic sensor, in 2011 Fifth International Conference on Sensing Technology (ICST) (IEEE, 2011), pp. 538–543

    Google Scholar 

  84. M.A.M. Yunus, S.C. Mukhopadhyay, S. Ibrahim, Planar electromagnetic sensor based estimation of nitrate contamination in water sources using independent component analysis. IEEE Sens. J. 12(6), 2024–2034 (2012)

    Article  Google Scholar 

  85. A.S.M. Nor, M. Faramarzi, M.A.M. Yunus, S. Ibrahim, Nitrate and sulfate estimations in water sources using a planar electromagnetic sensor array and artificial neural network method. IEEE Sens. J. 15(1), 497–504 (2015)

    Article  Google Scholar 

  86. M.M. Yunus, S.C. Mukhopadhyay, M. Rahman, N. Zahidin, S. Ibrahim, The selection of novel planar electromagnetic sensors for the application of nitrate contamination detection, in Smart Sensors for Real-Time Water Quality Monitoring (Springer, Berlin, 2013), pp. 171–195

    Google Scholar 

  87. M.M. Yunus, S.C. Mukhopadhyay, A. Punchihewa, S. Ibrahim, The effect of temperature factor on the detection of nitrate based on planar electromagnetic sensor and independent component analysis, in Smart Sensing Technology for Agriculture and Environmental Monitoring (Springer, Berlin, 2012), pp. 103–118

    Google Scholar 

  88. X. Wang, Y. Wang, H. Leung, S.C. Mukhopadhyay, M. Tian, J. Zhou, Mechanism and experiment of planar electrode sensors in water pollutant measurement. IEEE Trans. Instrum. Meas. 64(2), 516–523 (2015)

    Article  Google Scholar 

  89. A.V. Mamishev, K. Sundara-Rajan, F. Yang, Y. Du, M. Zahn, Interdigital sensors and transducers. Proc. IEEE 92(5), 808–845 (2004)

    Article  Google Scholar 

  90. M.E.E. Alahi, L. Xie, S. Mukhopadhyay, L. Burkitt, A temperature compensated smart nitrate-sensor for agricultural industry. IEEE Trans. Ind. Electron. 64(9), 7333–7341 (2017)

    Article  Google Scholar 

  91. M.E.E. Alahi, X. Li, S.C. Mukhopadhyay, L. Burkitt, A temperature compensated smart nitrate-sensor for agricultural industry. IEEE Trans. Ind. Electron. (2017)

    Google Scholar 

  92. M.E.E. Alahi, S.C. Mukhopadhyay, L. Burkitt, Imprinted polymer coated impedimetric nitrate sensor for real-time water quality monitoring. Sens. Actuators B Chem. 259, 753–761 (2018)

    Article  Google Scholar 

  93. M.E.E. Alahi, X. Li, S.C. Mukhopadhyay, L. Burkitt, Application of practical nitrate sensor based on electrochemical impedance spectroscopy, in Sensors for Everyday Life (Springer, Berlin, 2017), pp. 109–136

    Google Scholar 

  94. M.E.E. Alahi, A. Nag, S.C. Mukhopadhyay, L. Burkitt, A temperature-compensated graphene sensor for nitrate monitoring in real-time application. Sens. Actuators A 269, 79–90 (2018)

    Article  Google Scholar 

  95. M.E.E. Alahi, L. Xie, A.I. Zia, S.C. Mukhopadhyay, L. Burkitt, Practical nitrate sensor based on electrochemical impedance measurement, in 2016 IEEE International Instrumentation and Measurement Technology Conference Proceedings (I2MTC) (IEEE, 2016), pp. 1–6

    Google Scholar 

  96. M.E.E. Alahi, N. Afsarimanesh, S.C. Mukhopadhyay, L. Burkitt, Development of the selectivity of nitrate sensors based on ion imprinted polymerization technique, in 2017 Eleventh International Conference on Sensing Technology (ICST) (IEEE, 2017), pp. 1–6

    Google Scholar 

  97. M.E.E. Alahi, N. Pereira-Ishak, S.C. Mukhopadhyay, L. Burkitt, An internet-of-things enabled smart sensing system for nitrate monitoring. IEEE Internet Things J. (2018)

    Google Scholar 

  98. Y. Moo, M. Matjafri, H. Lim, C. Tan, New development of optical fibre sensor for determination of nitrate and nitrite in water. Optik-Int. J. Light Electron Optics 127(3), 1312–1319 (2016)

    Article  Google Scholar 

  99. A. Azmi, A.A. Azman, S. Ibrahim, M.A.M. Yunus, Techniques in advancing the capabilities of various nitrate detection methods: a review. Int. J. Smart Sens. Intell. Syst. 10(2) (2017)

    Article  Google Scholar 

  100. N. Amini, M. Shamsipur, M.B. Gholivand, K. Naderi, Electrocatalytic and new electrochemical properties of chloropromazine into silicaNPs/chloropromazine/Nafion nanocomposite: application to nitrite detection at low potential. Microchem. J. 131, 43–50 (2017)

    Article  Google Scholar 

  101. B. Mahieuxe, M. Carré, M. Viriot, J. André, M. Donner, Fiber-optic fluorescing sensors for nitrate and nitrite detection. J. Fluoresc. 4(1), 7–10 (1994)

    Article  Google Scholar 

  102. J. Camas-Anzueto, A. Aguilar-Castillejos, J. Castañón-González, M. Lujpan-Hidalgo, H.H. de León, R.M. Grajales, Fiber sensor based on Lophine sensitive layer for nitrate detection in drinking water. Opt. Lasers Eng. 60, 38–43 (2014)

    Article  Google Scholar 

  103. M.Y. Chong, M.Z.M. Jafri, L.H. San, T.C. Ho, Detection of nitrate ions in water by optical fiber, in 2012 International Conference on Computer and Communication Engineering (ICCCE) (IEEE, 2012), pp. 271–273

    Google Scholar 

  104. K.S. Johnson, L.J. Coletti, H.W. Jannasch, C.M. Sakamoto, D.D. Swift, S.C. Riser, Long-term nitrate measurements in the ocean using the in situ ultraviolet spectrophotometer: sensor integration into the Apex profiling float. J. Atmos. Oceanic Technol. 30(8), 1854–1866 (2013)

    Article  Google Scholar 

  105. A. Lalasangi et al., Fiber Bragg grating sensor for detection of nitrate concentration in water. Sens. Transducers 125(2), 187 (2011)

    Google Scholar 

  106. C. Munkholm, D.R. Walt, F.P. Milanovich, A fiber-optic sensor for CO2 measurement. Talanta 35(2), 109–112 (1988)

    Article  Google Scholar 

  107. Y. Zhu, A. Wang, Miniature fiber-optic pressure sensor. IEEE Photonics Technol. Lett. 17(2), 447–449 (2005)

    Article  Google Scholar 

  108. S. Zhang, H. Chen, H. Fu, Fiber-optic temperature sensor using an optoelectronic oscillator, in 14th International Conference on Optical Communications and Networks (ICOCN) (IEEE, 2015), pp. 1–3

    Google Scholar 

  109. F. Delport et al., Real-time monitoring of DNA hybridization and melting processes using a fiber optic sensor. Nanotechnology 23(6), 065503 (2012)

    Article  Google Scholar 

  110. P. Bhatia, B.D. Gupta, Fabrication and characterization of a surface plasmon resonance based fiber optic urea sensor for biomedical applications. Sens. Actuators B Chem. 161(1), 434–438 (2012)

    Article  Google Scholar 

  111. P. Bagade, A. Banerjee, S.K. Gupta, Evidence-based development approach for safe, sustainable and secure mobile medical app, in Wearable Electronics Sensors (Springer, Berlin, 2015), pp. 135–174

    Chapter  Google Scholar 

  112. Flexible smart sensors and the future of health. https://www.engadget.com/2015/09/21/flexible-smart-sensors-and-the-future-of-health/

  113. The state of flexible and printed electronics. http://www.printedelectronicsnow.com/issues/2015-03-01/view_features/the-state-of-flexible-and-printed-electronics

  114. 2016–2026: market forecasts. http://www.idtechex.com/research/reports/wearable-sensors-2016-2026-market-forecasts-technologies-players-000470.asp

  115. The wearable technology ecosystem: 2016–2030—opportunities, challenges, strategies, industry verticals and forecasts. http://www.openpr.com/news/348933/The-Wearable-Technology-Ecosystem-2016-2030-Opportunities-Challenges-Strategies-Industry-Verticals-And-Forecasts.html?__hstc = 197865264.638cea001f4f55aadbd731e528921f0a.1482980112036.1482980112036.1482980112036.1&__hssc=197865264.1.1482980112037&__hsfp=1381054282

  116. Organic electronics will play a key role in increasing the utility of wearables. https://www.wearable-technologies.com/2016/03/organic-electronics-will-play-a-key-role-in-increasing-the-utility-of-wearables/

  117. A. Nag, S. Mukhopadhyay, Smart home: recognition of activities of elderly for 24/7; coverage issues, in Proceedings of the 2014 International Conference on Sensing Technology, Liverpool, UK, vol. 2 (2014), pp. 480–489

    Google Scholar 

  118. V. Kafle, Y. Fukushima, H. Harai, Design and implementation of dynamic mobile sensor network platform. Commun. Mag. IEEE 53(3), 48–57 (2015)

    Article  Google Scholar 

  119. M.S. Khan, M.S. Islam, H. Deng, Design of a reconfigurable RFID sensing tag as a generic sensing platform toward the future internet of things. Internet Things J. IEEE 1(4), 300–310 (2014)

    Article  Google Scholar 

  120. M.E.E. Alahi, A. Nag, N. Afsari Manesh, S.C. Mukhopadhyay, J.K. Roy, A simple embedded sensor: Excitation and interfacing (Smart Sensors, Measurement and Instrumentation) (2017)

    Chapter  Google Scholar 

  121. M.E.E. Alahi, S.C. Mukhopadhyay, Detection methodologies for pathogen and toxins: a review. Sensors (Switzerland) (2017). https://doi.org/10.3390/s17081885

  122. H. Ghayvat, J. Liu, M. Alahi, S. Mukhopadhyay, X. Gui, Internet of things for smart homes and buildings: opportunities and challenges. Austr. J. Telecommun. Digital Econ. 3(4), 33–47 (2015)

    Article  Google Scholar 

  123. A. Ouadjaout et al., DZ50: energy-efficient wireless sensor mote platform for low data rate applications. Proc. Comput. Sci. 37, 189–195 (2014)

    Article  Google Scholar 

  124. A. Gluhak, S. Krco, M. Nati, D. Pfisterer, N. Mitton, T. Razafindralambo, A survey on facilities for experimental internet of things research. Commun. Mag. IEEE 49(11), 58–67 (2011)

    Article  Google Scholar 

  125. P. Mell, T. Grance, The NIST definition of cloud computing (2011)

    Google Scholar 

  126. A. Flammini, E. Sisinni, Wireless sensor networking in the internet of things and cloud computing era. Proc. Eng. 87, 672–679 (2014)

    Article  Google Scholar 

  127. I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, Wireless sensor networks: a survey. Comput. Netw. 38(4), 393–422 (2002)

    Article  Google Scholar 

  128. E. Gaura, L. Girod, J. Brusey, M. Allen, G. Challen, Wireless Sensor Networks: Deployments and Design Frameworks (Springer Science & Business Media, 2010)

    Google Scholar 

  129. J. Chen, M. Díaz, L. Llopis, B. Rubio, J.M. Troya, A survey on quality of service support in wireless sensor and actor networks: requirements and challenges in the context of critical infrastructure protection. J. Netw. Comput. Appl. 34(4), 1225–1239 (2011)

    Article  Google Scholar 

  130. R. Moss Kanter, S.S. Litow, Informed and interconnected: A manifesto for smarter cities (2009)

    Google Scholar 

  131. S. Dirks, M. Keeling, A Vision of Smarter Cities: How Cities Can Lead the Way into a Prosperous and Sustainable Future, vol. 8 (IBM Institute for Business Value, 2009)

    Google Scholar 

  132. J.M. Shapiro, Smart cities: quality of life, productivity, and the growth effects of human capital. The review of economics and statistics 88(2), 324–335 (2006)

    Article  Google Scholar 

  133. G. Werner-Allen, P. Swieskowski, M. Welsh, Motelab: a wireless sensor network testbed, in Proceedings of the 4th International Symposium on Information Processing in Sensor Networks (IEEE Press, 2005), p. 68

    Google Scholar 

  134. M. Doddavenkatappa, M.C. Chan, A.L. Ananda, Indriya: A low-cost, 3D wireless sensor network testbed, in Testbeds and Research Infrastructure. Development of Networks and Communities (Springer, 2012), pp. 302–316

    Google Scholar 

  135. A. Burns et al., SHIMMER™—a wireless sensor platform for noninvasive biomedical research. Sens. J. 10(9), 1527–1534 (2010)

    Article  Google Scholar 

  136. S. Pirbhulal et al., A novel secure IoT-based smart home automation system using a wireless sensor network. Sensors (Switzerland) (2017). https://doi.org/10.3390/s17010069

    Article  Google Scholar 

  137. G. Hackmann, W. Guo, G. Yan, Z. Sun, C. Lu, S. Dyke, Cyber-physical codesign of distributed structural health monitoring with wireless sensor networks. IEEE Trans. Parallel Distributed Syst. 25(1), 63–72 (2014)

    Article  Google Scholar 

  138. P. Sandeep et al., A novel secure IoT-based smart home automation system using a wireless sensor network. Sensors (2017). https://doi.org/10.3390/s17030606

    Article  Google Scholar 

  139. Z. Riaz, M. Arslan, A.K. Kiani, S. Azhar, CoSMoS: a BIM and wireless sensor based integrated solution for worker safety in confined spaces. Autom. Construct. 45, 96–106 (2014)

    Article  Google Scholar 

  140. E. Cañete, J. Chen, M. Díaz, L. Llopis, B. Rubio, Sensor4PRI: a sensor platform for the protection of railway infrastructures. Sensors 15(3), 4996–5019 (2015)

    Article  Google Scholar 

  141. N. Poursafar, M.E.E. Alahi, S.C. Mukhopadhyay, Long-range wireless technologies for IoT applications: a review, in 11th International Conference on Sensing Technology (ICST) (2017), pp. 310–315. ISBN 978-1-5090-6526-4

    Google Scholar 

  142. N. Afsarimanesh, M.E.E. Alahi, S.C. Mukhopadhyay, M. Kruger, A novel electrochemical biosensor for bone turnover detection based on molecular imprinting technology, in 11th International Conference on Sensing Technology (ICST) (2017), pp. 6–11. ISBN 978-1-5090-6526-4

    Google Scholar 

  143. M.E.E. Alahi, N. Afsarimanesh, S.C. Mukhopadhyay, L. Burkitt, Development of the selectivity of nitrate sensors based on ion imprinted polymerization technique, in 2017 11th International Conference on Sensing Technology (ICST) (2017), pp. 531–536. ISBN 978-1-5090-6526-4

    Google Scholar 

  144. N. Afsarimanesh, M. E. E. Alahi, S.C. Mukhopadhyay, M. Kruger, P.-L. Yu, Development of molecular imprinted polymer interdigital sensor for C-terminal telopeptide of type I collagen, in 2016 10th International Conference on Sensing Technology (ICST) (IEEE, 2016), pp. 1–5

    Google Scholar 

  145. A. Nag, M.E.E. Alahi, S.C. Mukhopadhyay, IoT-based sensing system for phosphate detection using Graphite/PDMS sensors. Sens. Actuators A Phys. (2018)

    Google Scholar 

  146. N. Afsarimanesh, M.E.E. Alahi, S.C. Mukhopadhyay, M. Kruger. Development of IoT-based impedometric biosensor for point-of-care monitoring of bone loss. IEEE J. Emerg. Select. Topics Circ. Syst. (2018)

    Google Scholar 

  147. C. CC2420. MEMSIC Inc. https://inst.eecs.berkeley.edu/~cs150/Documents/CC2420.pdf

  148. J. King, R. Bose, H.-I. Yang, S. Pickles, A. Helal, Atlas: a service-oriented sensor platform: Hardware and middleware to enable programmable pervasive spaces,” in 31st IEEE Conference on Local Computer Networks (IEEE, 2006), pp. 630–638

    Google Scholar 

  149. B. Zhou, S. Yang, T.H. Nguyen, T. Sun, K.T. Grattan, Wireless sensor network platform for intrinsic optical fiber pH sensors. Sens. J. 14(4), 1313–1320 (2014)

    Article  Google Scholar 

  150. S. Ferdoush, X. Li, Wireless sensor network system design using Raspberry Pi and Arduino for environmental monitoring applications. Proc. Comput. Sci. 34, 103–110 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Eshrat E Alahi .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alahi, M.E., Mukhopadhyay, S.C. (2019). Literature Review. In: Smart Nitrate Sensor. Smart Sensors, Measurement and Instrumentation, vol 35. Springer, Cham. https://doi.org/10.1007/978-3-030-20095-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20095-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20094-7

  • Online ISBN: 978-3-030-20095-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics