Skip to main content

Saccades: Fundamentals and Neural Mechanisms

  • Chapter
  • First Online:
Book cover Eye Movement Research

Abstract

Saccadic eye movements allow humans to explore the visual environment, quickly moving the fovea and attention to points of interest for detailed visual processing. Despite these rapid changes in visual input, the brain maintains a stable visual representation through saccadic suppression of blurred input and predictive remapping of receptive fields. In the laboratory, visually-guided saccades are driven primarily by the onset of new stimuli, while volitional saccades are driven by instructions or internal motivation. The distinction between these two classes of saccades is not definitive, but used to illustrate different cognitive loads that fall upon a spectrum based on the balance of visual input and cognitive control processes required to perform simple behavioral tasks. Visually-guided prosaccades depend upon a simple stimulus-response mapping whereby the eye movement is directed toward the peripheral stimulus quickly and accurately. Decision-making processes nonetheless slow the latencies of these basic visual-motor responses to ensure selection of an appropriate saccade target. To dissect the time course of saccade programming, researchers can include a secondary stimulus step or distractor stimulus in the saccade paradigm that alters response characteristics based on additional cognitive processes that occur. Attentional processes, for example, have a strong influence on the way in which participants respond: A pre-trial location cue attracts attention and reduces saccade latencies at that location and increases latencies at uncued locations. If attention is re-directed to central fixation, however, latencies to the originally cued location will be slower than other parts of the visual field, an effect known as inhibition of return. Furthermore, attentional preparation may contribute to the production of fast latency “express” saccades that occur in gap paradigms. The offset of fixation warns the participant of the upcoming stimulus appearance and disengages fixation neurons, allowing saccade-related activity to increase in expectation of the peripheral stimulus. On the other end of the spectrum, “volitional” forms of saccades are elicited via instructional manipulations that require participants to suppress an immediate saccade to a visual stimulus or otherwise rely upon endogenous goals to produce a saccade at a certain time. Antisaccades, ocular motor delayed response saccades, and predictive saccades all fall into this category. Antisaccade tasks require a saccade to the mirror image location of a visual stimulus, depending upon suppression of the visually-driven saccade tendency and a sensorimotor transformation of spatial coordinates to generate the volitional saccade successfully. In this task, the internal saccade programs representing the antisaccade and visually-guided saccade responses are modelled as competing activations racing toward a threshold for motor generation. An ocular motor delayed response task includes a delay period between the presentation of the peripheral stimulus and the time when participants are instructed to respond. Spatial memory processes thus are needed to maintain the target location after the visual stimulus itself is extinguished. Typically, both tasks result in slower latencies, more errors, and poorer spatial accuracy than their visually-guided counterparts. Finally, a predictive saccade task consists of a visual stimulus alternating between two locations at regular intervals. After a few trials, participants learn the spatiotemporal pattern and begin to anticipate the movement, generating saccades to the target location based on internal timing mechanisms before the visual stimulus appears. The aforementioned saccade tasks are supported by a well characterized and widespread neural saccade circuitry. This circuitry includes occipital cortex, posterior parietal cortex, frontal and supplementary eye fields, thalamus, basal ganglia, cerebellum, and the superior colliculus. Visual input initiates neural activation in occipital cortex which spreads to parietal and frontal regions for attentional processing, visuospatial calculations, and saccade motor preparation. Volitional saccade tasks show greater strength and/or extent of activation in this circuitry, and recruitment of new regions, including prefrontal cortex and anterior cingulate cortex, to support additional cognitive control requirements, such as inhibition, working memory, and motor learning. Along with input from the cerebellum, thalamus, and basal ganglia, cortical signals ultimately are integrated within the retinotopic maps of the superior colliculus where a single target location is selected and a motor program triggered via the brainstem ocular motor nuclei. Numerous neuroimaging studies in healthy humans using fMRI, EEG, MEG, and PET report activations in these brain areas during saccades and support findings from lesion studies and intracranial recordings in non-human primates. This consistency makes the saccade network a valuable model for studying cognitive control and understanding how the visual system integrates sensory input with internal goals to create a stable visual representation that guides efficient ocular motor behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Abrams, R. A., & Dobkin, R. S. (1994). Inhibition of return: Effects of attentional cuing on eye movement latencies. Journal of Experimental Psychology: Human Perception and Performance, 20(3), 467–477.

    PubMed  Google Scholar 

  • Amiez, C., & Petrides, M. (2009). Anatomical organization of the eye fields in the human and non-human primate frontal cortex. Progress in Neurobiology, 89(2), 220–230. https://doi.org/10.1016/j.pneurobio.2009.07.010.

    Article  PubMed  Google Scholar 

  • Anderson, T., Jenkins, I. H., Brooks, D. J., Hawken, M. B., Frackowiak, R. S., & Kennard, C. (1994). Cortical control of saccades and fixation in man. A PET study. Brain, 117(Pt 5), 1073–1084.

    Article  PubMed  Google Scholar 

  • Aron, A. R., & Poldrack, R. A. (2006). Cortical and subcortical contributions to Stop signal response inhibition: Role of the subthalamic nucleus. Journal of Neuroscience, 26(9), 2424–2433. https://doi.org/10.1523/jneurosci.4682-05.2006.

    Article  PubMed  Google Scholar 

  • Bahill, A. T., Clark, M. R., & Stark, L. (1975a). Dynamic overshoot in saccadic eye movements is caused by neurological control signal reversals. Experimental Neurology, 48(1), 107–122.

    Article  PubMed  Google Scholar 

  • Bahill, A. T., Clark, M. R., & Stark, L. (1975b). Glissades—Eye movements generated by mismatched components of the saccadic motoneuronal control signal. Mathematical Biosciences, 26(3), 303–318.

    Article  Google Scholar 

  • Bahill, A. T., Clark, M. R., & Stark, L. (1975c). The main sequence, a tool for studying human eye movements. Mathematical Biosciences, 24(3), 191–204.

    Article  Google Scholar 

  • Bahill, A. T., & Stark, L. (1975). Overlapping saccades and glissades are produced by fatigue in the saccadic eye movement system. Experimental Neurology, 48(1), 95–106.

    Article  PubMed  Google Scholar 

  • Bartlett, N. R. (1961). Latency of ocular fixation upon the second of two successive stimuli. Perceptual and Motor Skills, 13(3), 259–268.

    Article  Google Scholar 

  • Barton, J. J., Greenzang, C., Hefter, R., Edelman, J., & Manoach, D. S. (2006a). Switching, plasticity, and prediction in a saccadic task-switch paradigm. Experimental Brain Research, 168(1–2), 76–87. https://doi.org/10.1007/s00221-005-0091-1.

    Article  PubMed  Google Scholar 

  • Barton, J. J., Raoof, M., Jameel, O., & Manoach, D. S. (2006b). Task-switching with antisaccades versus no-go trials: A comparison of inter-trial effects. Experimental Brain Research, 172(1), 114–119. https://doi.org/10.1007/s00221-005-0313-6.

    Article  PubMed  Google Scholar 

  • Becker, W. (1989). The neurobiology of saccadic eye movements. Metrics. Reviews of Oculomotor Research, 3, 13–67.

    PubMed  Google Scholar 

  • Becker, W., & Fuchs, A. F. (1969). Further properties of the human saccadic system: Eye movements and correction saccades with and without visual fixation points. Vision Research, 9(10), 1247–1258. https://doi.org/10.1016/0042-6989(69)90112-6.

    Article  PubMed  Google Scholar 

  • Becker, W., & Jürgens, R. (1979). An analysis of the saccadic system by means of double step stimuli. Vision Research, 19(9), 967–983.

    Article  PubMed  Google Scholar 

  • Biscaldi, M., Fischer, B., & Stuhr, V. (1996). Human express saccade makers are impaired at suppressing visually evoked saccades. Journal of Neurophysiology, 76(1), 199–214.

    Article  PubMed  Google Scholar 

  • Borji, A., & Itti, L. (2014). Defending Yarbus: Eye movements reveal observers’ task. Journal of Vision, 14(3), 29. https://doi.org/10.1167/14.3.29.

    Article  PubMed  Google Scholar 

  • Boucher, L., Palmeri, T. J., Logan, G. D., & Schall, J. D. (2007). Inhibitory control in mind and brain: An interactive race model of countermanding saccades. Psychological Review, 114(2), 376–397. https://doi.org/10.1037/0033-295x.114.2.376.

    Article  PubMed  Google Scholar 

  • Bronstein, A. M., & Kennard, C. (1987). Predictive eye saccades are different from visually triggered saccades. Vision Research, 27(4), 517–520.

    Article  PubMed  Google Scholar 

  • Brown, M. R. G., DeSouza, J. F., Goltz, H. C., Ford, K., Menon, R. S., Goodale, M. A., Everling, S. (2004). Comparison of memory- and visually guided saccades using event-related fMRI. Journal of Neurophysiology, 91(2), 873–889. https://doi.org/10.1152/jn.00382.2003.

    Article  PubMed  Google Scholar 

  • Brown, M. R. G., Goltz, H. C., Vilis, T., Ford, K. A., & Everling, S. (2006). Inhibition and generation of saccades: Rapid event-related fMRI of prosaccades, antisaccades, and nogo trials. Neuroimage, 33(2), 644–659. https://doi.org/10.1016/j.neuroimage.2006.07.002.

    Article  PubMed  Google Scholar 

  • Burr, D. C., Morrone, M. C., & Ross, J. (1994). Selective suppression of the magnocellular visual pathway during saccadic eye movements. Nature, 371(6497), 511–513.

    Article  PubMed  Google Scholar 

  • Camalier, C. R., Gotler, A., Murthy, A., Thompson, K. G., Logan, G. D., Palmeri, T. J., Schall, J. D. (2007). Dynamics of saccade target selection: Race model analysis of double step and search step saccade production in human and macaque. Vision Research, 47(16), 2187–2211. https://doi.org/10.1016/j.visres.2007.04.021.

    Article  PubMed  PubMed Central  Google Scholar 

  • Camchong, J., Dyckman, K. A., Austin, B. P., Clementz, B. A., & McDowell, J. E. (2008). Common neural circuitry supporting volitional saccades and its disruption in schizophrenia patients and relatives. Biological Psychiatry, 64(12), 1042–1050. https://doi.org/10.1016/j.biopsych.2008.06.015.

    Article  PubMed  PubMed Central  Google Scholar 

  • Carpenter, R. H. (2000). The neural control of looking. Current Biology, 10(8), R291–R293.

    Article  PubMed  Google Scholar 

  • Carpenter, R. H., & Williams, M. L. (1995). Neural computation of log likelihood in control of saccadic eye movements. Nature, 377(6544), 59–62. https://doi.org/10.1038/377059a0.

    Article  PubMed  Google Scholar 

  • Cherkasova, M. V., Manoach, D. S., Intriligator, J. M., & Barton, J. J. (2002). Antisaccades and task-switching: Interactions in controlled processing. Experimental Brain Research, 144(4), 528–537. https://doi.org/10.1007/s00221-002-1075-z.

    Article  PubMed  Google Scholar 

  • Chikazoe, J., Konishi, S., Asari, T., Jimura, K., & Miyashita, Y. (2007). Activation of right inferior frontal gyrus during response inhibition across response modalities. Journal of Cognitive Neuroscience, 19(1), 69–80. https://doi.org/10.1162/jocn.2007.19.1.69.

    Article  PubMed  Google Scholar 

  • Clementz, B. A., Brahmbhatt, S. B., McDowell, J. E., Brown, R., & Sweeney, J. A. (2007). When does the brain inform the eyes whether and where to move? An EEG study in humans. Cerebral Cortex, 17(11), 2634–2643. https://doi.org/10.1093/cercor/bhl171.

    Article  PubMed  Google Scholar 

  • Clementz, B. A., Gao, Y., McDowell, J. E., Moratti, S., Keedy, S. K., & Sweeney, J. A. (2010). Top-down control of visual sensory processing during an ocular motor response inhibition task. Psychophysiology, 47(6), 1011–1018. https://doi.org/10.1111/j.1469-8986.2010.01026.x.

    Article  PubMed  PubMed Central  Google Scholar 

  • Clementz, B. A., Sweeney, J. A., Hamm, J. P., Ivleva, E. I., Ethridge, L. E., Pearlson, G. D. … Tamminga, C. A. (2016). Identification of distinct psychosis biotypes using brain-based biomarkers. American Journal of Psychiatry, 173(4), 373–384. https://doi.org/10.1176/appi.ajp.2015.14091200

    Article  Google Scholar 

  • Connolly, J. D., Goodale, M. A., Desouza, J. F., Menon, R. S., & Vilis, T. (2000). A comparison of frontoparietal fMRI activation during anti-saccades and anti-pointing. Journal of Neurophysiology, 84(3), 1645–1655.

    Article  PubMed  Google Scholar 

  • Connolly, J. D., Goodale, M. A., Goltz, H. C., & Munoz, D. P. (2005). fMRI activation in the human frontal eye field is correlated with saccadic reaction time. Journal of Neurophysiology, 94(1), 605–611.

    Article  PubMed  Google Scholar 

  • Connolly, J. D., Goodale, M. A., Menon, R. S., & Munoz, D. P. (2002). Human fMRI evidence for the neural correlates of preparatory set. Nature Neuroscience, 5(12), 1345–1352. https://doi.org/10.1038/nn969.

    Article  PubMed  Google Scholar 

  • Coren, S., & Hoenig, P. (1972). Effect of non-target stimuli upon length of voluntary saccades. Perceptual and Motor Skills, 34(2), 499–508.

    Article  PubMed  Google Scholar 

  • Curtis, C. E., & Connolly, J. D. (2008). Saccade preparation signals in the human frontal and parietal cortices. Journal of Neurophysiology, 99(1), 133–145. https://doi.org/10.1152/jn.00899.2007.

    Article  PubMed  Google Scholar 

  • Curtis, C. E., & D’Esposito, M. (2003). Success and failure suppressing reflexive behavior. Journal of Cognitive Neuroscience, 15(3), 409–418. https://doi.org/10.1162/089892903321593126.

    Article  PubMed  Google Scholar 

  • Cutsuridis, V., Smyrnis, N., Evdokimidis, I., & Perantonis, S. (2007). A neural model of decision-making by the superior colicullus in an antisaccade task. Neural Networks, 20(6), 690–704. https://doi.org/10.1016/j.neunet.2007.01.004.

    Article  PubMed  Google Scholar 

  • D’Esposito, M., Postle, B. R., & Rypma, B. (2000). Prefrontal cortical contributions to working memory: Evidence from event-related fMRI studies. Experimental Brain Research, 133(1), 3–11.

    Article  PubMed  Google Scholar 

  • Darby, D. G., Nobre, A. C., Thangaraj, V., Edelman, R., Mesulam, M. M., & Warach, S. (1996). Cortical activation in the human brain during lateral saccades using EPISTAR functional magnetic resonance imaging. Neuroimage, 3(1), 53–62. https://doi.org/10.1006/nimg.1996.0006.

    Article  PubMed  Google Scholar 

  • DeSouza, J. F., Menon, R. S., & Everling, S. (2003). Preparatory set associated with pro-saccades and anti-saccades in humans investigated with event-related FMRI. Journal of Neurophysiology, 89(2), 1016–1023.

    Article  PubMed  Google Scholar 

  • Deubel, H. (1995). Separate adaptive mechanisms for the control of reactive and volitional saccadic eye movements. Vision Research, 35(23–24), 3529–3540. https://doi.org/10.1016/0042-6989(95)00058-m.

    Article  PubMed  Google Scholar 

  • Deubel, H., & Schneider, W. X. (1996). Saccade target selection and object recognition: Evidence for a common attentional mechanism. Vision Research, 36(12), 1827–1837.

    Article  PubMed  Google Scholar 

  • Dodge, R. (1900). Visual perception during eye movement. Psychological Review, 7(5), 454.

    Article  Google Scholar 

  • Dodge, R. (1903). Five types of eye movement in the horizontal meridian plane of the field of regard. American Journal of Physiology-Legacy Content, 8.

    Article  Google Scholar 

  • Dodge, R. (1905). The illusion of clear vision during eye movement. Psychological Bulletin, 2(6), 193–199. https://doi.org/10.1037/h0070501.

    Article  Google Scholar 

  • Dodge, R. (1916). Visual motor functions. Psychological Bulletin, 13(11), 421–427. https://doi.org/10.1037/h0074240.

    Article  Google Scholar 

  • Duhamel, J. R., Colby, C. L., & Goldberg, M. E. (1992). The updating of the representation of visual space in parietal cortex by intended eye movements. Science, 255(5040), 90–92.

    Article  PubMed  Google Scholar 

  • Dyckman, K. A., Camchong, J., Clementz, B. A., & McDowell, J. E. (2007). An effect of context on saccade-related behavior and brain activity. Neuroimage, 36(3), 774–784. https://doi.org/10.1016/j.neuroimage.2007.03.023.

    Article  PubMed  Google Scholar 

  • Dyckman, K. A., & McDowell, J. E. (2005). Behavioral plasticity of antisaccade performance following daily practice. Experimental Brain Research, 162(1), 63–69. https://doi.org/10.1007/s00221-004-2105-9.

    Article  PubMed  Google Scholar 

  • Erdmann, B., & Dodge, R. (1898). Psychologische Untersuchungen über das Lesen auf experimenteller Grundlage. Halle, AS: Niemeyer, M.

    Google Scholar 

  • Ethridge, L. E., Brahmbhatt, S., Gao, Y., McDowell, J. E., & Clementz, B. A. (2009). Consider the context: Blocked versus interleaved presentation of antisaccade trials. Psychophysiology, 46(5), 1100–1107. https://doi.org/10.1111/j.1469-8986.2009.00834.x.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ettinger, U., Kumari, V., Crawford, T. J., Davis, R. E., Sharma, T., & Corr, P. J. (2003). Reliability of smooth pursuit, fixation, and saccadic eye movements. Psychophysiology, 40(4), 620–628.

    Article  PubMed  Google Scholar 

  • Evdokimidis, I., Smyrnis, N., Constantinidis, T. S., Stefanis, N. C., Avramopoulos, D., Paximadis, C. … Stefanis, C. N. (2002). The antisaccade task in a sample of 2,006 young men. I. Normal population characteristics. Experimental Brain Research, 147(1), 45–52. https://doi.org/10.1007/s00221-002-1208-4.

    Article  Google Scholar 

  • Everling, S., & Fischer, B. (1998). The antisaccade: A review of basic research and clinical studies. Neuropsychologia, 36(9), 885–899.

    Article  PubMed  Google Scholar 

  • Everling, S., & Johnston, K. (2013). Control of the superior colliculus by the lateral prefrontal cortex. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 368(1628), 20130068. https://doi.org/10.1098/rstb.2013.0068.

    Article  PubMed  PubMed Central  Google Scholar 

  • Findlay, J. M. (1982). Global visual processing for saccadic eye movements. Vision Research, 22(8), 1033–1045.

    Article  PubMed  Google Scholar 

  • Findlay, J. M. (2009). Saccadic eye movement programming: Sensory and attentional factors. Psychological Research, 73(2), 127–135. https://doi.org/10.1007/s00426-008-0201-3.

    Article  PubMed  Google Scholar 

  • Fischer, B., & Breitmeyer, B. (1987). Mechanisms of visual attention revealed by saccadic eye movements. Neuropsychologia, 25(1A), 73–83.

    Article  PubMed  Google Scholar 

  • Fischer, B., Gezeck, S., & Hartnegg, K. (2000). On the production and correction of involuntary prosaccades in a gap antisaccade task. Vision Research, 40(16), 2211–2217.

    Article  PubMed  Google Scholar 

  • Fischer, B., & Ramsperger, E. (1984). Human express saccades: Extremely short reaction times of goal directed eye movements. Experimental Brain Research, 57(1), 191–195.

    Article  PubMed  Google Scholar 

  • Fischer, B., & Weber, H. (1992). Characteristics of “anti” saccades in man. Experimental Brain Research, 89(2), 415–424.

    Article  PubMed  Google Scholar 

  • Fischer, B., & Weber, H. (1993). Express saccades and visual attention. Behavioral and Brain Sciences, 16, 553–610.

    Article  Google Scholar 

  • Forbes, K., & Klein, R. M. (1996). The magnitude of the fixation offset effect with endogenously and exogenously controlled saccades. Journal of Cognitive Neuroscience, 8(4), 344–352. https://doi.org/10.1162/jocn.1996.8.4.344.

    Article  PubMed  Google Scholar 

  • Ford, K. A., Goltz, H. C., Brown, M. R., & Everling, S. (2005). Neural processes associated with antisaccade task performance investigated with event-related FMRI. Journal of Neurophysiology, 94(1), 429–440. https://doi.org/10.1152/jn.00471.2004.

    Article  PubMed  Google Scholar 

  • Fox, P. T., Fox, J. M., Raichle, M. E., & Burde, R. M. (1985). The role of cerebral cortex in the generation of voluntary saccades: A positron emission tomographic study. Journal of Neurophysiology, 54(2), 348–369.

    Article  PubMed  Google Scholar 

  • Friesen, C. K., & Kingstone, A. (1998). The eyes have it! Reflexive orienting is triggered by nonpredictive gaze. Psychonomic Bulletin & Review, 5(3), 490–495.

    Article  Google Scholar 

  • Funahashi, S., Bruce, C. J., & Goldman-Rakic, P. S. (1991). Neuronal activity related to saccadic eye movements in the monkey’s dorsolateral prefrontal cortex. Journal of Neurophysiology, 65(6), 1464–1483.

    Article  PubMed  Google Scholar 

  • Funahashi, S., Chafee, M. V., & Goldman-Rakic, P. S. (1993). Prefrontal neuronal activity in rhesus monkeys performing a delayed anti-saccade task. Nature, 365(6448), 753–756. https://doi.org/10.1038/365753a0.

    Article  PubMed  Google Scholar 

  • Gezeck, S., Fischer, B., & Timmer, J. (1997). Saccadic reaction times: A statistical analysis of multimodal distributions. Vision Research, 37(15), 2119–2131.

    Article  PubMed  Google Scholar 

  • Gnadt, J. W., Bracewell, R. M., & Andersen, R. A. (1991). Sensorimotor transformation during eye movements to remembered visual targets. Vision Research, 31(4), 693–715.

    Article  PubMed  Google Scholar 

  • Godijn, R., & Theeuwes, J. (2002). Programming of endogenous and exogenous saccades: Evidence for a competitive integration model. Journal of Experimental Psychology: Human Perception and Performance, 28(5), 1039.

    PubMed  Google Scholar 

  • Gottlieb, J., & Goldberg, M. E. (1999). Activity of neurons in the lateral intraparietal area of the monkey during an antisaccade task. Nature Neuroscience, 2(10), 906–912. https://doi.org/10.1038/13209.

    Article  PubMed  Google Scholar 

  • Grosbras, M. H., Leonards, U., Lobel, E., Poline, J. B., LeBihan, D., & Berthoz, A. (2001). Human cortical networks for new and familiar sequences of saccades. Cerebral Cortex, 11(10), 936–945.

    Article  PubMed  Google Scholar 

  • Grosbras, M. H., Lobel, E., Van de Moortele, P. F., LeBihan, D., & Berthoz, A. (1999). An anatomical landmark for the supplementary eye fields in human revealed with functional magnetic resonance imaging. Cerebral Cortex, 9(7), 705–711.

    Article  PubMed  Google Scholar 

  • Guitton, D., Buchtel, H. A., & Douglas, R. M. (1985). Frontal lobe lesions in man cause difficulties in suppressing reflexive glances and in generating goal-directed saccades. Experimental Brain Research, 58(3), 455–472.

    Article  PubMed  Google Scholar 

  • Hallett, P. E. (1978). Primary and secondary saccades to goals defined by instructions. Vision Research, 18, 1279–1296.

    Article  PubMed  Google Scholar 

  • Hallett, P. E., & Adams, B. D. (1980). The predictability of saccadic latency in a novel voluntary oculomotor task. Vision Research, 20(4), 329–339.

    Article  PubMed  Google Scholar 

  • Hamm, J. P., Dyckman, K. A., Ethridge, L. E., McDowell, J. E., & Clementz, B. A. (2010). Preparatory activations across a distributed cortical network determine production of express saccades in humans. Journal of Neuroscience, 30(21), 7350–7357. https://doi.org/10.1523/jneurosci.0785-10.2010.

    Article  PubMed  Google Scholar 

  • Hamm, J. P., Dyckman, K. A., McDowell, J. E., & Clementz, B. A. (2012). Pre-cue fronto-occipital alpha phase and distributed cortical oscillations predict failures of cognitive control. Journal of Neuroscience, 32(20), 7034–7041. https://doi.org/10.1523/jneurosci.5198-11.2012.

    Article  PubMed  Google Scholar 

  • Hanes, D. P., & Carpenter, R. (1999). Countermanding saccades in humans. Vision Research, 39(16), 2777–2791.

    Article  PubMed  Google Scholar 

  • Hanes, D. P., & Schall, J. D. (1996). Neural control of voluntary movement initiation. Science, 274(5286), 427–430.

    Article  PubMed  Google Scholar 

  • Hanes, D. P., & Wurtz, R. H. (2001). Interaction of the frontal eye field and superior colliculus for saccade generation. Journal of Neurophysiology, 85(2), 804–815.

    Article  PubMed  Google Scholar 

  • Harris, C. M., & Wolpert, D. M. (2006). The main sequence of saccades optimizes speed-accuracy trade-off. Biological Cybernetics, 95(1), 21–29. https://doi.org/10.1007/s00422-006-0064-x.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hayakawa, Y., Nakajima, T., Takagi, M., Fukuhara, N., & Abe, H. (2002). Human cerebellar activation in relation to saccadic eye movements: A functional magnetic resonance imaging study. Ophthalmologica, 216(6), 399–405.

    Article  PubMed  Google Scholar 

  • Hayhoe, M., & Ballard, D. (2005). Eye movements in natural behavior. Trends in Cognitive Sciences, 9(4), 188–194. https://doi.org/10.1016/j.tics.2005.02.009.

    Article  PubMed  Google Scholar 

  • Heeman, J., Theeuwes, J., & Van der Stigchel, S. (2014). The time course of top-down control on saccade averaging. Vision Research, 100, 29–37. https://doi.org/10.1016/j.visres.2014.03.007.

    Article  PubMed  Google Scholar 

  • Heide, W., Binkofski, F., Seitz, R. J., Posse, S., Nitschke, M. F., Freund, H. J., Kompf, D. (2001). Activation of frontoparietal cortices during memorized triple-step sequences of saccadic eye movements: An fMRI study. European Journal of Neuroscience, 13(6), 1177–1189.

    Article  Google Scholar 

  • Heiser, L. M., & Colby, C. L. (2006). Spatial updating in area LIP is independent of saccade direction. Journal of Neurophysiology, 95(5), 2751–2767. https://doi.org/10.1152/jn.00054.2005.

    Article  PubMed  Google Scholar 

  • Henderson, J. M., & Hollingworth, A. (2003). Eye movements and visual memory: Detecting changes to saccade targets in scenes. Perception and Psychophysics, 65(1), 58–71.

    Article  PubMed  Google Scholar 

  • Henik, A., Rafal, R., & Rhodes, D. (1994). Endogenously generated and visually guided saccades after lesions of the human frontal eye fields. Journal of Cognitive Neuroscience, 6(4), 400–411. https://doi.org/10.1162/jocn.1994.6.4.400.

    Article  PubMed  Google Scholar 

  • Hering, E. (1879). Uber Muskelgerausche des Auges. Sitzungsberichte der kaiserlichen Akademie der Wissenschaften in Wien. Mathematisch-naturwissenschaftliche Klasse. Abt III, 79, 137–154.

    Google Scholar 

  • Hermens, F., & Walker, R. (2015). The influence of social and symbolic cues on observers’ gaze behaviour. British Journal of Psychology. https://doi.org/10.1111/bjop.12159.

    Article  PubMed  Google Scholar 

  • Hess, W., Burgi, S., & Bucher, V. (1946). Motor function of tectal and tegmental area. Monatsschrift fur Psychiatrie und Neurologie, 112, 1–52.

    Article  PubMed  Google Scholar 

  • Hikosaka, O., Nakamura, K., & Nakahara, H. (2006). Basal ganglia orient eyes to reward. Journal of Neurophysiology, 95(2), 567–584. https://doi.org/10.1152/jn.00458.2005.

    Article  PubMed  Google Scholar 

  • Hoffman, J. E., & Subramaniam, B. (1995). The role of visual attention in saccadic eye movements. Perception and Psychophysics, 57(6), 787–795.

    Article  PubMed  Google Scholar 

  • Holzman, P. S., Proctor, L. R., & Hughes, D. W. (1973). Eye-tracking patterns in schizophrenia. Science, 181, 179–181.

    Article  PubMed  Google Scholar 

  • Honda, H. (1989). Perceptual localization of visual stimuli flashed during saccades. Perception and Psychophysics, 45(2), 162–174.

    Article  PubMed  Google Scholar 

  • Hooge, I. T., & Frens, M. A. (2000). Inhibition of saccade return (ISR): Spatio-temporal properties of saccade programming. Vision Research, 40(24), 3415–3426.

    Article  PubMed  Google Scholar 

  • Hopp, J. J., & Fuchs, A. F. (2004). The characteristics and neuronal substrate of saccadic eye movement plasticity. Progress in Neurobiology, 72(1), 27–53. https://doi.org/10.1016/j.pneurobio.2003.12.002.

    Article  PubMed  Google Scholar 

  • Hutton, S. B. (2008). Cognitive control of saccadic eye movements [Review]. Brain and Cognition, 68(3), 327–340. https://doi.org/10.1016/j.bandc.2008.08.021.

    Article  PubMed  Google Scholar 

  • Ibbotson, M., & Krekelberg, B. (2011). Visual perception and saccadic eye movements. Current Opinion in Neurobiology, 21(4), 553–558. https://doi.org/10.1016/j.conb.2011.05.012.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ito, S., Stuphorn, V., Brown, J. W., & Schall, J. D. (2003). Performance monitoring by the anterior cingulate cortex during saccade countermanding. Science, 302(5642), 120–122. https://doi.org/10.1126/science.1087847.

    Article  PubMed  Google Scholar 

  • Jamadar, S. D., Fielding, J., & Egan, G. F. (2013). Quantitative meta-analysis of fMRI and PET studies reveals consistent activation in fronto-striatal-parietal regions and cerebellum during antisaccades and prosaccades. Frontiers in Psychology, 4, 749. https://doi.org/10.3389/fpsyg.2013.00749.

    Article  PubMed  PubMed Central  Google Scholar 

  • Javal, E. (1879). Essai sur la Physiologie de la Lecture. Annales D’Oculistique.

    Google Scholar 

  • Johnston, K., & Everling, S. (2008). Neurophysiology and neuroanatomy of reflexive and voluntary saccades in non-human primates. Brain and Cognition, 68(3), 271–283. https://doi.org/10.1016/j.bandc.2008.08.017.

    Article  PubMed  Google Scholar 

  • Joiner, W. M., Cavanaugh, J., & Wurtz, R. H. (2013). Compression and suppression of shifting receptive field activity in frontal eye field neurons. Journal of Neuroscience, 33(46), 18259–18269. https://doi.org/10.1523/jneurosci.2964-13.2013.

    Article  PubMed  Google Scholar 

  • Joiner, W. M., & Shelhamer, M. (2006). An internal clock generates repetitive predictive saccades. Experimental Brain Research, 175(2), 305–320. https://doi.org/10.1007/s00221-006-0554-z.

    Article  PubMed  Google Scholar 

  • Kagan, I., Iyer, A., Lindner, A., & Andersen, R. A. (2010). Space representation for eye movements is more contralateral in monkeys than in humans. Proceedings of the National Academy of Sciences of the United States of America, 107(17), 7933–7938. https://doi.org/10.1073/pnas.1002825107.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalesnykas, R. P., & Hallett, P. E. (1994). Retinal eccentricity and the latency of eye saccades. Vision Research, 34(4), 517–531.

    Article  PubMed  Google Scholar 

  • Kimmig, H., Greenlee, M. W., Gondan, M., Schira, M., Kassubek, J., & Mergner, T. (2001). Relationship between saccadic eye movements and cortical activity as measured by fMRI: Quantitative and qualitative aspects. Experimental Brain Research, 141(2), 184–194. https://doi.org/10.1007/s002210100844.

    Article  PubMed  Google Scholar 

  • Kingstone, A., & Klein, R. M. (1993a). Visual offsets facilitate saccadic latency: Does predisengagement of visuospatial attention mediate this gap effect? Journal of Experimental Psychology: Human Perception and Performance, 19(6), 1251–1265.

    PubMed  Google Scholar 

  • Kingstone, A., & Klein, R. M. (1993b). What are human express saccades? Perception and Psychophysics, 54(2), 260–273.

    Article  PubMed  Google Scholar 

  • Klein, C., & Berg, P. (2001). Four-week test-retest stability of individual differences in the saccadic CNV, two saccadic task parameters, and selected neuropsychological tests. Psychophysiology, 38(4), 704–711.

    Article  PubMed  Google Scholar 

  • Klein, C., & Fischer, B. (2005a). Developmental fractionation and differential discrimination of the anti-saccadic direction error. Experimental Brain Research, 165(1), 132–138. https://doi.org/10.1007/s00221-005-2324-8.

    Article  PubMed  Google Scholar 

  • Klein, C., & Fischer, B. (2005b). Instrumental and test-retest reliability of saccadic measures. Biological Psychology, 68(3), 201–213. https://doi.org/10.1016/j.biopsycho.2004.06.005.

    Article  PubMed  Google Scholar 

  • Klein, R. M. (2000). Inhibition of return. Trends in Cognitive Sciences, 4(4), 138–147.

    Article  PubMed  Google Scholar 

  • Klier, E. M., & Angelaki, D. E. (2008). Spatial updating and the maintenance of visual constancy. Neuroscience, 156(4), 801–818. https://doi.org/10.1016/j.neuroscience.2008.07.079.

    Article  PubMed  Google Scholar 

  • Koch, C., & Ullman, S. (1985). Shifts in selective visual attention: Towards the underlying neural circuitry. Human Neurobiology, 4(4), 219–227.

    PubMed  Google Scholar 

  • Konen, C. S., Kleiser, R., Wittsack, H.-J., Bremmer, F., & Seitz, R. J. (2004). The encoding of saccadic eye movements within human posterior parietal cortex. Neuroimage, 22(1), 304–314.

    Article  PubMed  Google Scholar 

  • Koval, M. J., Thomas, B. S., & Everling, S. (2005). Task-dependent effects of social attention on saccadic reaction times. Experimental Brain Research, 167(3), 475–480. https://doi.org/10.1007/s00221-005-0206-8.

    Article  PubMed  Google Scholar 

  • Kowler, E. (2011). Eye movements: The past 25 years. Vision Research, 51(13), 1457–1483. https://doi.org/10.1016/j.visres.2010.12.014.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kowler, E., Anderson, E., Dosher, B., & Blaser, E. (1995). The role of attention in the programming of saccades. Vision Research, 35(13), 1897–1916. https://doi.org/10.1016/0042-6989(94)00279-u.

    Article  PubMed  Google Scholar 

  • Krafft, C. E., Schwarz, N. F., Chi, L., Li, Q., Schaeffer, D. J., Rodrigue, A. L., McDowell, J. E. (2012). The location and function of parietal cortex supporting of reflexive and volitional saccades, a meta-analysis of over a decade of functional MRI data. In A. Costa & E. Villalba (Eds.), Horizons of neuroscience research (Vol. 9, pp. 131–153). Hauppauge, NY: Nova Science Publishers.

    Google Scholar 

  • Krebs, R. M., Woldorff, M. G., Tempelmann, C., Bodammer, N., Noesselt, T., Boehler, C. N. … Schoenfeld, M. A. (2010). High-field FMRI reveals brain activation patterns underlying saccade execution in the human superior colliculus. PLoS ONE, 5(1), e8691. https://doi.org/10.1371/journal.pone.0008691.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kurtzberg, D., & Vaughan, H. G., Jr. (1982). Topographic analysis of human cortical potentials preceding self-initiated and visually triggered saccades. Brain Research, 243(1), 1–9.

    Article  PubMed  Google Scholar 

  • Land, M. F., & Lee, D. N. (1994). Where we look when we steer. Nature, 369(6483), 742–744. https://doi.org/10.1038/369742a0.

    Article  PubMed  Google Scholar 

  • Lee, J., Park, C., Dyckman, K. A., Lazar, N. A., Austin, B. P., Li, Q., McDowell, J. E. (2013). Practice-related changes in neural activation patterns investigated via wavelet-based clustering analysis. Human Brain Mapping, 34(9), 2276–2291. https://doi.org/10.1002/hbm.22066.

    Article  PubMed  Google Scholar 

  • Leigh, R. J., & Zee, D. S. (2015). The neurology of eye movements. USA: Oxford University Press.

    Google Scholar 

  • Li, Q., Amlung, M. T., Valtcheva, M., Camchong, J., Austin, B. P., Dyckman, K. A., McDowell, J. E. (2012). Evidence from cluster analysis for differentiation of antisaccade performance groups based on speed/accuracy trade-offs. International Journal of Psychophysiology, 85, 274–277. https://doi.org/10.1016/j.ijpsycho.2012.03.008.

    Article  PubMed  PubMed Central  Google Scholar 

  • Logan, G. D., & Irwin, D. E. (2000). Don’t look! Don’t touch! Inhibitory control of eye and hand movements. Psychonomic Bulletin & Review, 7(1), 107–112.

    Article  Google Scholar 

  • Luke, S. G., & Henderson, J. M. (2016). The influence of content meaningfulness on eye movements across tasks: Evidence from scene viewing and reading. Front Psychol, 7, 257. https://doi.org/10.3389/fpsyg.2016.00257.

    Article  PubMed  PubMed Central  Google Scholar 

  • Luna, B., Thulborn, K. R., Strojwas, M. H., McCurtain, B. J., Berman, R. A., Genovese, C. R., & Sweeney, J. A. (1998). Dorsal cortical regions subserving visually guided saccades in humans: An fMRI study. Cerebral Cortex, 8(1), 40–47.

    Article  PubMed  Google Scholar 

  • Mackay, M., Cerf, M., & Koch, C. (2012). Evidence for two distinct mechanisms directing gaze in natural scenes. Journal of Vision, 12(4), 9. https://doi.org/10.1167/12.4.9.

    Article  PubMed  Google Scholar 

  • Manoach, D. S., Thakkar, K. N., Cain, M. S., Polli, F. E., Edelman, J. A., Fischl, B., & Barton, J. J. (2007). Neural activity is modulated by trial history: A functional magnetic resonance imaging study of the effects of a previous antisaccade. Journal of Neuroscience, 27(7), 1791–1798. https://doi.org/10.1523/jneurosci.3662-06.2007.

    Article  PubMed  Google Scholar 

  • Martinez-Conde, S., Macknik, S. L., & Hubel, D. H. (2004). The role of fixational eye movements in visual perception. Nature Reviews Neuroscience, 5(3), 229–240.

    Article  PubMed  Google Scholar 

  • Martinez-Conde, S., Macknik, S. L., Troncoso, X. G., & Dyar, T. A. (2006). Microsaccades counteract visual fading during fixation. Neuron, 49(2), 297–305.

    Article  PubMed  Google Scholar 

  • Martinez-Conde, S., Macknik, S. L., Troncoso, X. G., & Hubel, D. H. (2009). Microsaccades: A neurophysiological analysis. Trends in Neurosciences, 32(9), 463–475.

    Article  PubMed  Google Scholar 

  • Martinez-Conde, S., Otero-Millan, J., & Macknik, S. L. (2013). The impact of microsaccades on vision: Towards a unified theory of saccadic function. Nature Reviews Neuroscience, 14(2), 83–96.

    Article  PubMed  Google Scholar 

  • Massen, C. (2004). Parallel programming of exogenous and endogenous components in the antisaccade task. Quarterly Journal of Experimental Psychology A, 57(3), 475–498. https://doi.org/10.1080/02724980343000341.

    Article  Google Scholar 

  • Matin, E. (1974). Saccadic suppression: A review and an analysis. Psychological Bulletin, 81(12), 899.

    Article  PubMed  Google Scholar 

  • Matin, L., & Pearce, D. G. (1965). Visual perception of direction for stimuli flashed during voluntary saccadic eye movements. Science, 148(3676), 1485–1488. https://doi.org/10.1126/science.148.3676.1485.

    Article  PubMed  Google Scholar 

  • Maylor, E. A., & Hockey, R. (1985). Inhibitory component of externally controlled covert orienting in visual space. Journal of Experimental Psychology: Human Perception and Performance, 11(6), 777–787.

    PubMed  Google Scholar 

  • McDowell, J. E., Clementz, B. A., & Wixted, J. T. (1996). Timing and amplitude of saccades during predictive saccadic tracking in schizophrenia. Psychophysiology, 33(1), 93–101.

    Article  PubMed  Google Scholar 

  • McDowell, J. E., Dyckman, K. A., Austin, B. P., & Clementz, B. A. (2008). Neurophysiology and neuroanatomy of reflexive and volitional saccades: Evidence from studies of humans. [Review]. Brain and Cognition, 68(3), 255–270.

    Google Scholar 

  • McDowell, J. E., Kissler, J. M., Berg, P., Dyckman, K. A., Gao, Y., Rockstroh, B., & Clementz, B. A. (2005). Electroencephalography/magnetoencephalography study of cortical activities preceding prosaccades and antisaccades. NeuroReport, 16(7), 663–668.

    Article  PubMed  Google Scholar 

  • McLaughlin, S. C. (1967). Parametric adjustment in saccadic eye movements. Perception and Psychophysics, 2(8), 359–362.

    Article  Google Scholar 

  • McPeek, R. M., & Keller, E. L. (2002). Saccade target selection in the superior colliculus during a visual search task. Journal of Neurophysiology, 88(4), 2019–2034.

    Article  PubMed  Google Scholar 

  • Medendorp, W. P., Goltz, H. C., & Vilis, T. (2005). Remapping the remembered target location for anti-saccades in human posterior parietal cortex. Journal of Neurophysiology, 94(1), 734–740. https://doi.org/10.1152/jn.01331.2004.

    Article  PubMed  Google Scholar 

  • Meiran, N., Chorev, Z., & Sapir, A. (2000). Component processes in task switching. Cognitive Psychology, 41(3), 211–253. https://doi.org/10.1006/cogp.2000.0736.

    Article  PubMed  Google Scholar 

  • Melamed, E., & Larsen, B. (1979). Cortical activation pattern during saccadic eye movements in humans: Localization by focal cerebral blood flow increases. Annals of Neurology, 5(1), 79–88.

    Article  PubMed  Google Scholar 

  • Merriam, E. P., Genovese, C. R., & Colby, C. L. (2003). Spatial updating in human parietal cortex. Neuron, 39(2), 361–373.

    Article  PubMed  Google Scholar 

  • Meyhöfer, I., Bertsch, K., Esser, M., & Ettinger, U. (2016). Variance in saccadic eye movements reflects stable traits. Psychophysiology, 53(4), 566–578. https://doi.org/10.1111/psyp.12592.

    Article  PubMed  Google Scholar 

  • Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202. https://doi.org/10.1146/annurev.neuro.24.1.167.

    Article  PubMed  Google Scholar 

  • Miller, J. M., Anstis, T., & Templeton, W. B. (1981). Saccadic plasticity: Parametric adaptive control by retinal feedback. Journal of Experimental Psychology: Human Perception and Performance, 7(2), 356–366.

    PubMed  Google Scholar 

  • Mills, M., Hollingworth, A., Van der Stigchel, S., Hoffman, L., & Dodd, M. D. (2011). Examining the influence of task set on eye movements and fixations. Journal of Vision, 11(8), 17–17. https://doi.org/10.1167/11.8.17.

    Article  PubMed  Google Scholar 

  • Milner, A. D., & Goodale, M. A. (1995). The visual brain in action (Vol. 27). England.

    Google Scholar 

  • Mishkin, M., Ungerleider, L. G., & Macko, K. A. (1983). Object vision and spatial vision: Two cortical pathways. Trends in Neurosciences, 6, 414–417.

    Article  Google Scholar 

  • Mokler, A., & Fischer, B. (1999). The recognition and correction of involuntary prosaccades in an antisaccade task. Experimental Brain Research, 125(4), 511–516.

    Article  PubMed  Google Scholar 

  • Morrone, M. C., Ross, J., & Burr, D. (2005). Saccadic eye movements cause compression of time as well as space. Nature Neuroscience, 8(7), 950–954.

    Article  PubMed  Google Scholar 

  • Morrone, M. C., Ross, J., & Burr, D. C. (1997). Apparent position of visual targets during real and simulated saccadic eye movements. Journal of Neuroscience, 17(20), 7941–7953.

    Article  PubMed  Google Scholar 

  • Mort, D. J., Perry, R. J., Mannan, S. K., Hodgson, T. L., Anderson, E., Quest, R. … Kennard, C. (2003). Differential cortical activation during voluntary and reflexive saccades in man. Neuroimage, 18(2), 231–246. https://doi.org/10.1016/s1053-8119(02)00028-9.

    Article  PubMed  Google Scholar 

  • Mosimann, U. P., Felblinger, J., Colloby, S. J., & Muri, R. M. (2004). Verbal instructions and top-down saccade control. Experimental Brain Research, 159(2), 263–267. https://doi.org/10.1007/s00221-004-2086-8.

    Article  PubMed  Google Scholar 

  • Munoz, D. P., & Everling, S. (2004). Look away: The anti-saccade task and the voluntary control of eye movement. Nature Reviews Neuroscience, 5(3), 218–228. https://doi.org/10.1038/nrn1345.

    Article  PubMed  Google Scholar 

  • Muri, R. M., Iba-Zizen, M. T., Derosier, C., Cabanis, E. A., & Pierrot-Deseilligny, C. (1996). Location of the human posterior eye field with functional magnetic resonance imaging. Journal of Neurology, Neurosurgery and Psychiatry, 60(4), 445–448.

    Article  PubMed  PubMed Central  Google Scholar 

  • Neggers, S., Raemaekers, M., Lampmann, E., Postma, A., & Ramsey, N. (2005). Cortical and subcortical contributions to saccade latency in the human brain. European Journal of Neuroscience, 21(10), 2853–2863.

    Article  Google Scholar 

  • Nitschke, M. F., Binkofski, F., Buccino, G., Posse, S., Erdmann, C., Kömpf, D., & Heide, W. (2004). Activation of cerebellar hemispheres in spatial memorization of saccadic eye movements: An fMRI study. Human Brain Mapping, 22(2), 155–164.

    Article  PubMed  PubMed Central  Google Scholar 

  • Noorani, I., & Carpenter, R. H. (2013). Antisaccades as decisions: LATER model predicts latency distributions and error responses. European Journal of Neuroscience, 37(2), 330–338. https://doi.org/10.1111/ejn.12025.

    Article  Google Scholar 

  • Nummenmaa, L., Hyona, J., & Calvo, M. G. (2009). Emotional scene content drives the saccade generation system reflexively. Journal of Experimental Psychology: Human Perception and Performance, 35(2), 305–323. https://doi.org/10.1037/a0013626.

    Article  PubMed  Google Scholar 

  • O’Driscoll, G. A., Alpert, N. M., Matthysse, S. W., Levy, D. L., Rauch, S. L., & Holzman, P. S. (1995). Functional neuroanatomy of antisaccade eye movements investigated with positron emission tomography. Proc Natl Acad Sci U S A, 92(3), 925–929.

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Driscoll, G. A., Wolff, A. L., Benkelfat, C., Florencio, P. S., Lal, S., & Evans, A. C. (2000). Functional neuroanatomy of smooth pursuit and predictive saccades. NeuroReport, 11(6), 1335–1340.

    Article  PubMed  Google Scholar 

  • Orgogozo, J., & Larsen, B. (1979). Activation of the supplementary motor area during voluntary movement in man suggests it works as a supramotor area. Science, 206(4420), 847–850.

    Article  PubMed  Google Scholar 

  • Panouilleres, M., Weiss, T., Urquizar, C., Salemme, R., Munoz, D. P., & Pelisson, D. (2009). Behavioral evidence of separate adaptation mechanisms controlling saccade amplitude lengthening and shortening. Journal of Neurophysiology, 101(3), 1550–1559. https://doi.org/10.1152/jn.90988.2008.

    Article  PubMed  Google Scholar 

  • Paus, T., Petrides, M., Evans, A. C., & Meyer, E. (1993). Role of the human anterior cingulate cortex in the control of oculomotor, manual, and speech responses: A positron emission tomography study. Journal of Neurophysiology, 70(2), 453–469.

    Article  PubMed  Google Scholar 

  • Pélisson, D., Alahyane, N., Panouillères, M., & Tilikete, C. (2010). Sensorimotor adaptation of saccadic eye movements. Neuroscience & Biobehavioral Reviews, 34(8), 1103–1120. https://doi.org/10.1016/j.neubiorev.2009.12.010.

    Article  Google Scholar 

  • Pierce, J. E., McCardel, J. B., & McDowell, J. E. (2015). Trial-type probability and task-switching effects on behavioral response characteristics in a mixed saccade task. Experimental Brain Research, 233(3), 959–969. https://doi.org/10.1007/s00221-014-4170-z.

    Article  PubMed  Google Scholar 

  • Pierce, J. E., & McDowell, J. E. (2016). Modulation of cognitive control levels via manipulation of saccade trial-type probability assessed with event-related BOLD fMRI. Journal of Neurophysiology, 115(2), 763–772. https://doi.org/10.1152/jn.00776.2015.

    Article  PubMed  Google Scholar 

  • Pierrot-Deseilligny, C., Muri, R. M., Nyffeler, T., & Milea, D. (2005). The role of the human dorsolateral prefrontal cortex in ocular motor behavior. Annals of the New York Academy of Sciences, 1039, 239–251. https://doi.org/10.1196/annals.1325.023.

    Article  PubMed  Google Scholar 

  • Pierrot-Deseilligny, C., Muri, R. M., Ploner, C. J., Gaymard, B., Demeret, S., & Rivaud-Pechoux, S. (2003). Decisional role of the dorsolateral prefrontal cortex in ocular motor behaviour. Brain, 126(Pt 6), 1460–1473.

    Article  PubMed  Google Scholar 

  • Pierrot-Deseilligny, C., Rivaud, S., Gaymard, B., & Agid, Y. (1991). Cortical control of reflexive visually-guided saccades. Brain, 114(Pt 3), 1473–1485.

    Article  PubMed  Google Scholar 

  • Polli, F. E., Barton, J. J., Cain, M. S., Thakkar, K. N., Rauch, S. L., & Manoach, D. S. (2005). Rostral and dorsal anterior cingulate cortex make dissociable contributions during antisaccade error commission. Proceedings of the National Academy of Sciences of the United States of America, 102(43), 15700–15705. https://doi.org/10.1073/pnas.0503657102.

    Article  PubMed  PubMed Central  Google Scholar 

  • Posner, M. I. (1980). Orienting of attention. The Quarterly Journal of Experimental Psychology, 32(1), 3–25.

    Article  PubMed  Google Scholar 

  • Posner, M. I., & Cohen, Y. (1984). Components of visual orienting. Attention and performance X: Control of language processes, 32, 531–556.

    Google Scholar 

  • Pratt, J., Bekkering, H., & Leung, M. (2000). Estimating the components of the gap effect. Experimental Brain Research, 130(2), 258–263.

    Article  PubMed  Google Scholar 

  • Rafal, R., Egly, R., & Rhodes, D. (1994). Effects of inhibition of return on voluntary and visually guided saccades. Canadian Journal of Experimental Psychology, 48(2), 284–300.

    Article  PubMed  Google Scholar 

  • Reddi, B. A., & Carpenter, R. H. (2000). The influence of urgency on decision time. Nature Neuroscience, 3(8), 827–830. https://doi.org/10.1038/77739.

    Article  PubMed  Google Scholar 

  • Reuter-Lorenz, P. A., Hughes, H. C., & Fendrich, R. (1991). The reduction of saccadic latency by prior offset of the fixation point: An analysis of the gap effect. Perception and Psychophysics, 49(2), 167–175.

    Article  PubMed  Google Scholar 

  • Reuter-Lorenz, P. A., Oonk, H., Barnes, L., & Hughes, H. (1995). Effects of warning signals and fixation point offsets on the latencies of pro-versus antisaccades: Implications for an interpretation of the gap effect. Experimental Brain Research, 103(2), 287–293.

    Article  PubMed  Google Scholar 

  • Risko, E. F., Anderson, N. C., Lanthier, S., & Kingstone, A. (2012). Curious eyes: Individual differences in personality predict eye movement behavior in scene-viewing. Cognition, 122(1), 86–90. https://doi.org/10.1016/j.cognition.2011.08.014.

    Article  PubMed  Google Scholar 

  • Rizzolatti, G., Riggio, L., Dascola, I., & Umilta, C. (1987). Reorienting attention across the horizontal and vertical meridians: Evidence in favor of a premotor theory of attention. Neuropsychologia, 25(1A), 31–40.

    Article  PubMed  Google Scholar 

  • Robinson, D. A. (1968). The oculomotor control system: A review. Proceedings of the IEEE, 56(6), 1032–1049.

    Article  Google Scholar 

  • Robinson, D. A. (1981). The use of control systems analysis in the neurophysiology of eye movements. Annual Review of Neuroscience, 4(1), 463–503.

    Article  PubMed  Google Scholar 

  • Robinson, D. L., & McClurkin, J. W. (1989). The visual superior colliculus and pulvinar. Reviews of Oculomotor Research, 3, 337–360.

    PubMed  Google Scholar 

  • Rogers, R. D., & Monsell, S. (1995). Costs of a predictible switch between simple cognitive tasks. Journal of Experimental Psychology: General, 124(2), 207–231. https://doi.org/10.1037/0096-3445.124.2.207.

    Article  Google Scholar 

  • Ross, J., Morrone, M. C., & Burr, D. C. (1997). Compression of visual space before saccades. Nature, 386(6625), 598–601.

    Article  PubMed  Google Scholar 

  • Ross, J., Morrone, M. C., Goldberg, M. E., & Burr, D. C. (2001). Changes in visual perception at the time of saccades. Trends in Neurosciences, 24(2), 113–121.

    Article  PubMed  Google Scholar 

  • Ross, S. M., & Ross, L. E. (1987). Children’s and adults’ predictive saccades to square-wave targets. Vision Research, 27(12), 2177–2180.

    Article  PubMed  Google Scholar 

  • Saslow, M. G. (1967). Effects of components of displacement-step stimuli upon latency for saccadic eye movement. J Opt Soc Am, 57(8), 1024–1029.

    Article  PubMed  Google Scholar 

  • Schaeffer, D. J., Chi, L., Krafft, C. E., Li, Q., Schwarz, N. F., & McDowell, J. E. (2015). Individual differences in working memory moderate the relationship between prosaccade latency and antisaccade error rate. Psychophysiology, 52(4), 605–608. https://doi.org/10.1111/psyp.12380.

    Article  PubMed  Google Scholar 

  • Schiller, P. H., Sandell, J. H., & Maunsell, J. H. (1987). The effect of frontal eye field and superior colliculus lesions on saccadic latencies in the rhesus monkey. Journal of Neurophysiology, 57(4), 1033–1049.

    Article  PubMed  Google Scholar 

  • Schiller, P. H., & Tehovnik, E. J. (2005). Neural mechanisms underlying target selection with saccadic eye movements. Progress in Brain Research, 149, 157–171. https://doi.org/10.1016/s0079-6123(05)49012-3.

    Article  PubMed  Google Scholar 

  • Sharika, K. M., Ramakrishnan, A., & Murthy, A. (2014). Use of exocentric and egocentric representations in the concurrent planning of sequential saccades. Journal of Neuroscience, 34(48), 16009–16021. https://doi.org/10.1523/jneurosci.0328-14.2014.

    Article  PubMed  Google Scholar 

  • Shelhamer, M., & Joiner, W. M. (2003). Saccades exhibit abrupt transition between reactive and predictive; predictive saccade sequences have long-term correlations. Journal of Neurophysiology, 90(4), 2763–2769. https://doi.org/10.1152/jn.00478.2003.

    Article  PubMed  Google Scholar 

  • Shenhav, A., Botvinick, M. M., & Cohen, J. D. (2013). The expected value of control: An integrative theory of anterior cingulate cortex function. Neuron, 79(2), 217–240. https://doi.org/10.1016/j.neuron.2013.07.007.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shires, J., Joshi, S., & Basso, M. A. (2010). Shedding new light on the role of the basal ganglia-superior colliculus pathway in eye movements. Current Opinion in Neurobiology, 20(6), 717–725. https://doi.org/10.1016/j.conb.2010.08.008.

    Article  PubMed  PubMed Central  Google Scholar 

  • Simó, L. S., Krisky, C. M., & Sweeney, J. A. (2005). Functional neuroanatomy of anticipatory behavior: Dissociation between sensory-driven and memory-driven systems. Cerebral Cortex, 15(12), 1982–1991.

    Article  PubMed  Google Scholar 

  • Smit, A., Van Gisbergen, J., & Cools, A. (1987). A parametric analysis of human saccades in different experimental paradigms. Vision Research, 27(10), 1745–1762.

    Article  PubMed  Google Scholar 

  • Smyrnis, N., Evdokimidis, I., Stefanis, N. C., Constantinidis, T. S., Avramopoulos, D., Theleritis, C. … Stefanis, C. N. (2002). The antisaccade task in a sample of 2,006 young males. II. Effects of task parameters. Experimental Brain Research, 147(1), 53–63. https://doi.org/10.1007/s00221-002-1207-5.

    Article  Google Scholar 

  • Stark, L., Vossius, G., & Young, L. R. (1962). Predictive control of eye tracking movements. Institute of Radio Engineers Trans in Human Factors and Electronics, 3, 52–57.

    Article  Google Scholar 

  • Stevenson, S. B., Volkmann, F. C., Kelly, J. P., & Riggs, L. A. (1986). Dependence of visual suppression on the amplitudes of saccades and blinks. Vision Research, 26(11), 1815–1824.

    Article  PubMed  Google Scholar 

  • Stuyven, E., Van der Goten, K., Vandierendonck, A., Claeys, K., & Crevits, L. (2000). The effect of cognitive load on saccadic eye movements. Acta Psychologica (Amst), 104(1), 69–85.

    Article  Google Scholar 

  • Sweeney, J., Mintun, M., Kwee, S., Wiseman, M., Brown, D., Rosenberg, D., & Carl, J. (1996). Positron emission tomography study of voluntary saccadic eye movements and spatial working memory. Journal of Neurophysiology, 75(1), 454–468.

    Article  PubMed  Google Scholar 

  • Taya, S., Windridge, D., & Osman, M. (2012). Looking to score: The dissociation of goal influence on eye movement and meta-attentional allocation in a complex dynamic natural scene. PLoS ONE, 7(6), e39060. https://doi.org/10.1371/journal.pone.0039060.

    Article  PubMed  PubMed Central  Google Scholar 

  • Thakkar, K. N., Schall, J. D., Logan, G. D., & Park, S. (2015). Response inhibition and response monitoring in a saccadic double-step task in schizophrenia. Brain and Cognition, 95, 90–98. https://doi.org/10.1016/j.bandc.2015.01.007.

    Article  PubMed  PubMed Central  Google Scholar 

  • Theeuwes, J., Kramer, A. F., Hahn, S., & Irwin, D. E. (1998). Our eyes do not always go where we want them to go: Capture of the eyes by new objects. Psychological Science, 9(5), 379–385.

    Article  Google Scholar 

  • Trappenberg, T., Dorris, M., Munoz, D., & Klein, R. (2001). A model of saccade initiation based on the competitive integration of exogenous and endogenous signals in the superior colliculus. Journal of Cognitive Neuroscience, 13(2), 256–271.

    Article  PubMed  Google Scholar 

  • Umeno, M. M., & Goldberg, M. E. (1997). Spatial processing in the monkey frontal eye field. I. Predictive visual responses. Journal of Neurophysiology, 78(3), 1373–1383.

    Article  PubMed  Google Scholar 

  • Van Der Werf, J., Jensen, O., Fries, P., & Medendorp, W. P. (2008). Gamma-band activity in human posterior parietal cortex encodes the motor goal during delayed prosaccades and antisaccades. Journal of Neuroscience, 28(34), 8397–8405. https://doi.org/10.1523/jneurosci.0630-08.2008.

    Article  Google Scholar 

  • Volkmann, F. C. (1986). Human visual suppression. Vision Research, 26(9), 1401–1416.

    Article  PubMed  Google Scholar 

  • von Wartburg, R., Wurtz, P., Pflugshaupt, T., Nyffeler, T., Luthi, M., & Muri, R. M. (2007). Size matters: Saccades during scene perception. Perception, 36(3), 355–365.

    Article  Google Scholar 

  • Voogd, J., Schraa-Tam, C. K., van der Geest, J. N., & De Zeeuw, C. I. (2012). Visuomotor cerebellum in human and nonhuman primates. The Cerebellum, 11(2), 392–410.

    Article  PubMed  Google Scholar 

  • Wade, N. J., Tatler, B. W., & Heller, D. (2003). Dodge-ing the issue: Dodge, Javal, Hering, and the measurement of saccades in eye-movement research. Perception, 32(7), 793–804.

    Article  PubMed  Google Scholar 

  • Walker, M., Fitzgibbon, E. J., & Goldberg, M. E. (1995). Neurons in the monkey superior colliculus predict the visual result of impending saccadic eye movements. Journal of Neurophysiology, 73(5), 1988–2003.

    Article  PubMed  Google Scholar 

  • Walker, R., Deubel, H., Schneider, W. X., & Findlay, J. M. (1997). Effect of remote distractors on saccade programming: Evidence for an extended fixation zone. Journal of Neurophysiology, 78(2), 1108–1119.

    Article  PubMed  Google Scholar 

  • Walker, R., Walker, D. G., Husain, M., & Kennard, C. (2000). Control of voluntary and reflexive saccades. Experimental Brain Research, 130(4), 540–544.

    Article  PubMed  Google Scholar 

  • Wallman, J., & Fuchs, A. F. (1998). Saccadic gain modification: Visual error drives motor adaptation. Journal of Neurophysiology, 80(5), 2405–2416.

    Article  PubMed  Google Scholar 

  • Weber, H., Aiple, F., Fischer, B., & Latanov, A. (1992). Dead zone for express saccades. Experimental Brain Research, 89(1), 214–222.

    Article  PubMed  Google Scholar 

  • Weber, R. B., & Daroff, R. B. (1972). Corrective movements following refixation saccades: Type and control system analysis. Vision Research, 12(3), 467–475.

    Article  PubMed  Google Scholar 

  • Weiler, J., & Heath, M. (2012). Task-switching in oculomotor control: Unidirectional switch-cost when alternating between pro- and antisaccades. Neuroscience Letters, 530(2), 150–154. https://doi.org/10.1016/j.neulet.2012.10.007.

    Article  PubMed  Google Scholar 

  • Wheeless, L. L., Jr., Boynton, R. M., & Cohen, G. H. (1966). Eye-movement responses to step and pulse-step stimuli. Journal of the Optical Society of America, 56(7), 956–960.

    Article  PubMed  Google Scholar 

  • Wolohan, F. D., & Knox, P. C. (2014). Oculomotor inhibitory control in express saccade makers. Experimental Brain Research. https://doi.org/10.1007/s00221-014-4076-9.

    Article  PubMed  Google Scholar 

  • Wong, A. L., & Shelhamer, M. (2011). Sensorimotor adaptation error signals are derived from realistic predictions of movement outcomes. Journal of Neurophysiology, 105(3), 1130–1140.

    Article  PubMed  Google Scholar 

  • Wurtz, R. H. (2008). Neuronal mechanisms of visual stability. Vision Research, 48(20), 2070–2089. https://doi.org/10.1016/j.visres.2008.03.021.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yantis, S., & Jonides, J. (1984). Abrupt visual onsets and selective attention: Evidence from visual search. Journal of Experimental Psychology: Human Perception and Performance, 10(5), 601–621.

    PubMed  Google Scholar 

  • Yantis, S., & Jonides, J. (1990). Abrupt visual onsets and selective attention: Voluntary versus automatic allocation. Journal of Experimental Psychology: Human Perception and Performance, 16(1), 121–134.

    PubMed  Google Scholar 

  • Yarbus, A. L. (1967). Eye movements during perception of complex objects. Berlin: Springer.

    Google Scholar 

  • Zorn, A., Joiner, W. M., Lasker, A. G., & Shelhamer, M. (2007). Sensory versus motor information in the control of predictive saccade timing. Experimental Brain Research, 179(3), 505–515. https://doi.org/10.1007/s00221-006-0806-y.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordan E. Pierce .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pierce, J.E., Clementz, B.A., McDowell, J.E. (2019). Saccades: Fundamentals and Neural Mechanisms. In: Klein, C., Ettinger, U. (eds) Eye Movement Research. Studies in Neuroscience, Psychology and Behavioral Economics. Springer, Cham. https://doi.org/10.1007/978-3-030-20085-5_2

Download citation

Publish with us

Policies and ethics