One-Class Classification to Predict the Success of Private-Participation Infrastructure Projects in Europe

  • Álvaro HerreroEmail author
  • Alfredo Jiménez
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 950)


Foreign investment has significantly increased in infrastructure projects as governments have realized the potential advantages for the host countries in terms of capital and technical expertise. Private participation projects are a common vehicle for private firms to invest in infrastructures, although these projects are typically subject to pressures from the government, consumers, suppliers, regulatory institutions, and public opinion. Forecasting the success of these projects in advance is a key element to be taken into account when deciding about participation. To support this kind of decisions, present paper proposes the application of some one-class classifiers to check their ability to predict the final success of private participation projects involving infrastructures. To validate the proposed soft-computing models, they are applied to a real-life dataset from the World Bank, comprising information about projects in European countries within the Energy and Telecommunication sectors.


Classification Support Vector Machines Random trees k nearest neighbors Private-participation projects Internationalization 


  1. 1.
    Henisz, W.J., Zelner, B.A., Guillén, M.F.: The worldwide diffusion of market-oriented infrastructure reform, 1977–1999. Am. Sociol. Rev. 70, 871–897 (2005)CrossRefGoogle Scholar
  2. 2.
    Jiang, Y., Peng, M.W., Yang, X., Mutlu, C.C.: Privatization, governance, and survival: MNE investments in private participation projects in emerging economies. J. World Bus. 50, 294–301 (2015)CrossRefGoogle Scholar
  3. 3.
    Ramamurti, R., Doh, J.P.: Rethinking foreign infrastructure investment in developing countries. J. World Bus. 39, 151–167 (2004)CrossRefGoogle Scholar
  4. 4.
    Jiménez, A., Salvaj, E., Lee, J.Y.: Policy risk, distance, and private participation projects in Latin America. J. Bus. Res. 88, 123–131 (2018)CrossRefGoogle Scholar
  5. 5.
    Jiménez, A., Russo, M., Kraak, J.M., Jiang, G.F.: Corruption and private participation projects in Central and Eastern Europe. Manage. Int. Rev. 57, 775–792 (2017)CrossRefGoogle Scholar
  6. 6.
    Palmero, J.A., Herrera, J.J.D., de la Fuente Sabaté, J.M.: The role of psychic distance stimuli on the East-West FDI location structure in the EU. Evidence from Spanish MNEs. J. East Eur. Manage. Stud. 18, 36–65 (2013)CrossRefGoogle Scholar
  7. 7.
    Akbar, Y., Balboni, B., Bortoluzzi, G., Dikova, D., Tracogna, A.: Disentangling resource and mode escalation in the context of emerging markets. Evidence from a sample of manufacturing SMEs. J. Int. Manage. 24, 257–270 (2018)CrossRefGoogle Scholar
  8. 8.
    Pinzón, C., Herrero, Á., De Paz, J.F., Corchado, E., Bajo, J.: CBRid4SQL: A CBR Intrusion Detector for SQL Injection Attacks, pp. 510–519. Springer, Heidelberg (2010)Google Scholar
  9. 9.
    Ksieniewicz, P., Krawczyk, B., Woźniak, M.: Ensemble of Extreme Learning Machines with trained classifier combination and statistical features for hyperspectral data. Neurocomputing 271, 28–37 (2018)CrossRefGoogle Scholar
  10. 10.
    Herrero, Á., Jiménez, A.: Improving the management of industrial and environmental enterprises by means of soft computing. Cybernet. Syst. 50, 1–2 (2019)CrossRefGoogle Scholar
  11. 11.
    Jiménez, A., Herrero, Á.: Selecting features that drive internationalization of Spanish firms. Cybernet. Syst. 50, 25–39 (2019)CrossRefGoogle Scholar
  12. 12.
    Simić, D., Svirčević, V., Ilin, V., Simić, S.D., Simić, S.: Particle swarm optimization and pure adaptive search in finish goods’ inventory management. Cybernet. Syst. 50, 58–77 (2019)CrossRefGoogle Scholar
  13. 13.
    Herrero, Á., Jiménez, A., Bayraktar, S.: Hybrid unsupervised exploratory plots: a case study of analysing foreign direct investment. Complexity (2019, in press)Google Scholar
  14. 14.
    Huang, Z., Chen, H., Hsu, C.-J., Chen, W.-H., Wu, S.: Credit rating analysis with support vector machines and neural networks: a market comparative study. Decis. Support Syst. 37, 543–558 (2004)CrossRefGoogle Scholar
  15. 15.
    Chou, J.-S., Cheng, M.-Y., Wu, Y.-W.: Improving classification accuracy of project dispute resolution using hybrid artificial intelligence and support vector machine models. Expert Syst. Appl. 40, 2263–2274 (2013)CrossRefGoogle Scholar
  16. 16.
    Malhotra, M.K., Sharma, S., Nair, S.S.: Decision making using multiple models. Eur. J. Oper. Res. 114, 1–14 (1999)CrossRefGoogle Scholar
  17. 17.
    Yu, M.C.: Multi-criteria ABC analysis using artificial-intelligence-based classification techniques. Expert Syst. Appl. 38, 3416–3421 (2011)CrossRefGoogle Scholar
  18. 18.
    Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: 5th Annual Workshop on Computational Learning Theory, pp. 144–152. ACM (1992)Google Scholar
  19. 19.
    Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)zbMATHGoogle Scholar
  20. 20.
    Byun, H., Lee, S.-W.: Applications of Support Vector Machines for Pattern Recognition: A Survey, pp. 213–236. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  21. 21.
    Cunningham, P., Delany, S.J.: k-Nearest neighbour classifiers. Technical report UCD-CSI-2007-4 (2007)Google Scholar
  22. 22.
    Cover, T.M., Hart, P.E.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13, 21–27 (1967)CrossRefGoogle Scholar
  23. 23.
    Safavian, S.R., Landgrebe, D.: A survey of decision tree classifier methodology. IEEE Trans. Syst. Man Cybern. 21, 660–674 (1991)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Sreerama, K.M.: Automatic construction of decision trees from data: a multi-disciplinary survey. Data Min. Knowl. Disc. 2, 345–389 (1998)CrossRefGoogle Scholar
  25. 25.
    Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)CrossRefGoogle Scholar
  26. 26.
    Probst, P., Boulesteix, A.-L.: To tune or not to tune the number of trees in random forest? J. Mach. Learn. Res. 18, 1–18 (2018)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Jiménez, A., Jiang, G.F., Petersen, B., Gammelgaard, J.: Within-country religious diversity and the performance of private participation infrastructure projects. J. Bus. Res. 95, 13–25 (2019)CrossRefGoogle Scholar
  28. 28.
    Keig, D.L., Brouthers, L.E., Marshall, V.B.: Formal and informal corruption environments and multinational enterprise social irresponsibility. J. Manage. Stud. 52, 89–116 (2015)CrossRefGoogle Scholar
  29. 29.
    Cuervo-Cazurra, A.: Better the devil you don’t know: types of corruption and FDI in transition economies. J. Int. Manag. 14, 12–27 (2008)CrossRefGoogle Scholar
  30. 30.
    Henisz, W.J.: The institutional environment for infrastructure investment. Ind. Corp. Change 11, 355–389 (2002)CrossRefGoogle Scholar
  31. 31.
    Holburn, G.L., Zelner, B.A.: Political capabilities, policy risk, and international investment strategy: evidence from the global electric power generation industry. Strateg. Manag. J. 31, 1290–1315 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Grupo de Inteligencia Computacional Aplicada (GICAP), Departamento de Ingeniería Civil, Escuela Politécnica SuperiorUniversidad de BurgosBurgosSpain
  2. 2.Department of ManagementKEDGE Business SchoolBordeauxFrance

Personalised recommendations