Material Flow Optimization Using Milk Run System in Automotive Industry

  • Dragan SimićEmail author
  • Vasa Svirčević
  • Vladimir Ilin
  • Svetislav D. Simić
  • Svetlana Simić
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 950)


Material flow can be characterized as an organized flow of material in the production process with the required sequence determined by the technological procedure. This paper presents biological swarm intelligence in general, and, particle swarm optimization for modelling material flow optimization using milk run system in production system of automotive industry. The aim of this research is to create model to optimize route period and number of trails for one train considering layout and space constraints.


Milk run Material flow Particle swarm optimization 


  1. 1.
    Wagner, B., Enzler, S.: Material Flow Management. Physica – Verlag, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Urru, A., Bonini, M, Echelmeyer, W.: Planning of a milk-run systems in high constrained industrial scenarios. In: Proceeding of 22nd IEEE International Conference on Intelligent Engineering Systems, pp. 231–238 (2018)Google Scholar
  3. 3.
    Simić, D., Simić, S.: Hybrid artificial intelligence approaches on vehicle routing problem in logistics distribution. In: Hybrid Artificial Intelligence Systems. LNCS, vol. 7208, pp. 208–220. Springer, Heidelberg (2012)Google Scholar
  4. 4.
    Simić, D., Kovačević, I., Svirčević, V., Simić, S.: Hybrid firefly model in routing heterogeneous fleet of vehicles in logistics distribution. Log. J. IGPL 23(3), 521–532 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Ilin, V., Ivetić, J., Simić, D.: Understanding the determinants of e-business adoption in ERP-enabled firms and non-ERP-enabled firms: a case study of the Western Balkan Peninsula. Technol. Forecast. Soc. Chang. 125, 206–223 (2017)CrossRefGoogle Scholar
  6. 6.
    Simić, D., Svirčević, V., Ilin, V., Simić, S.D., Simić, S.: Particle swarm optimization and pure adaptive search in finish goods’ inventory management. Cybern. Syst. 50(1), 58–77 (2019)CrossRefGoogle Scholar
  7. 7.
    Kodym, O., Čujan, Z., Turek, M., Mikušová, N.: Optimization of material flow using simulation. MATEC Web of Conferences, VVaPOL 2018, vol. 263, p. 01007 (2019). Scholar
  8. 8.
    Krolczyk, J.B., Krolczyk, G.M., Legutko, S., Napiorkowski, J., Hloch, S., Foltys, J., Tama, E.: Material flow optimization – a case study in automotive industry. Tehnički vjesnik – Technical Gazette 22(6), 1447–1456 (2015)Google Scholar
  9. 9.
    Patel, D.R.: Design and optimization of milk-run material supply system with simultaneous pickups and deliveries in time windows. Gujarat Technological University, Ahmedabad, India, Ph.D. thesis (2017)Google Scholar
  10. 10.
    Aksoy, A., Öztürk, N.: A two-stage method to optimize the milk-run system. Eur. J. Eng. Res. Sci. 1(3), 7–11 (2016)Google Scholar
  11. 11.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. IEEE Int. Conf. Neural Netw. 4, 1942–1948 (1995)Google Scholar
  12. 12.
    Shi, Y., Eberhart, R.: A Modified particle swarm optimizer. In: IEEE International Conference on Evolutionary Computation, pp. 69–73 (1998)Google Scholar
  13. 13.
    Harris, R., Harris, C., Wilson, E.: Making Materials Flow. Lean Enterprise Institute, US (2003)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Dragan Simić
    • 1
    Email author
  • Vasa Svirčević
    • 2
  • Vladimir Ilin
    • 1
  • Svetislav D. Simić
    • 1
  • Svetlana Simić
    • 3
  1. 1.Faculty of Technical SciencesUniversity of Novi SadNovi SadSerbia
  2. 2.Lear d.o.oNovi SadSerbia
  3. 3.Faculty of MedicineUniversity of Novi SadNovi SadSerbia

Personalised recommendations