Advertisement

A Proposal of Robust Leak Localization in Water Distribution Networks Using Differential Evolution

  • Maibeth Sánchez-Rivero
  • Marcos Quiñones-Grueiro
  • Carlos Cruz Corona
  • Antônio J. Silva Neto
  • Orestes Llanes-SantiagoEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 950)

Abstract

The performance of popular leak location strategies that depend on the use of a leak sensitivity matrix (LSM) is highly dependent on the conditions used for generating such matrix. Since noise is present in real Water Distribution Networks (WDNs), the location results can deteriorate seriously when using the former methods. A robust model-based leak localization approach by using Differential Evolution (DE) algorithm is presented in this article. The proposal uses the topological information of the water distribution network in the location of the leak and it does not depend on the sensitivity matrix. The proposed method demonstrates its robustness compared with the LSM approach by using the Hanoi network as case study. The performance achieved by the proposal improves the leak location accuracy by 20% with respect to LSM-based leak location method in the presence of different noise magnitudes.

Keywords

Differential Evolution Measurement’s noise Model-based leak localization Robustness 

References

  1. 1.
    Camps Echevarría, L., Llanes-Santiago, O., da Silva Neto, A.J.: An approach for fault diagnosis based on bio- inspired strategies. In: Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2010. No. September 2015 (2010).  https://doi.org/10.1109/CEC.2010.5586357
  2. 2.
    Casillas Ponce, M.V., Castañón, L.E.G., Puig, V.: Model-based Leak Detection and Location in Water Distribution Networks considering an Extended-horizon Analysis of Pressure Sensitivities. Journal of Hydroinformatics 16(3), 649–670 (2014).  https://doi.org/10.2166/hydro.2013.019CrossRefGoogle Scholar
  3. 3.
    Casillas Ponce, M.V., Garza-Castañón, L.E., Puig, V.: Optimal Sensor Placement for Leak Location in Water Distribution Networks using Evolutionary Algorithms. Water pp. 6496–6515 (2015).  https://doi.org/10.3390/w7116496CrossRefGoogle Scholar
  4. 4.
    Casillas Ponce, M.V., Garza-Castañón, L.E., Puig, V., Vargas-Martinez, A.: Leak Signature Space: An Original Representation for Robust Leak Location in Water Distribution Networks. Water pp. 1129–1148 (2015).  https://doi.org/10.3390/w7031129CrossRefGoogle Scholar
  5. 5.
    Cugueró-Escofet, M.A., Puig, V., Quevedo, J.: Optimal pressure sensor placement and assessment for leak location using a relaxed isolation index: application to the barcelona water network. Control Eng. Pract. 63(June), 1–12 (2017).  https://doi.org/10.1016/j.conengprac.2017.03.003CrossRefGoogle Scholar
  6. 6.
    Ferrandez-Gamot, L., Busson, P., Blesa, J., Tornil-Sin, S., Puig, V., Duviella,E., Soldevila, A.: Leak Localization in Water Distribution Networks using Pressure Residuals and Classifiers. IFAC-PapersOnLine 48(21),220–225 (2015).  https://doi.org/10.1016/j.ifacol.2015.09.531, http://dx.doi.org/10.1016/j.ifacol.2015.09.531CrossRefGoogle Scholar
  7. 7.
    Fujiwara, O., Khang, D.B.: A two-phase decomposition method for optimal design of looped water distribution networks. Water Resour. Res. 26(4), 539–549 (1990)CrossRefGoogle Scholar
  8. 8.
    Pérez, R., Puig, V., Pascual, J., Quevedo, J., Landeros, E., Peralta, A.: Methodology for leakage isolation using pressure sensitivity analysis in water distribution networks. Control Eng. Pract. 19(10), 1157–1167 (2011).  https://doi.org/10.1016/j.conengprac.2011.06.004CrossRefGoogle Scholar
  9. 9.
    Pérez, R., Puig, V., Peralta, A., Landeros, E., Jordanas, L.: Pressure sensor distribution for leak detection in Barcelona water distribution network. Water Sci. Technol. Water Supply 9(6), 715–721 (2009).  https://doi.org/10.2166/ws.2009.372CrossRefGoogle Scholar
  10. 10.
    Pudar, R.S., Liggett, J.A.: Leaks in pipe networks. J. Hydraul. Eng. 118(7), 1031–1046 (1992)CrossRefGoogle Scholar
  11. 11.
    Puust, R., Kapelan, Z.S., Savic, D., Koopel, T.: A review of methods for leakage management in pipe networks. J. Urban Water 7(1), 25–45 (2010).  https://doi.org/10.1080/15730621003610878CrossRefGoogle Scholar
  12. 12.
    Rossman, L.A.: Epanet 2 Users Manual (2000)Google Scholar
  13. 13.
    Soldevila, A., Blesa, J., Tornil-Sin, S., Duviella, E., Fernandez-Canti, R.M., Puig, V.: Leak localization in water distribution networks using a mixed model-based/data-driven approach. Control Eng. Pract. 55, 162–173 (2016).  https://doi.org/10.1016/j.conengprac.2016.07.006CrossRefGoogle Scholar
  14. 14.
    Steffelbauer, D.B., Günther, M., Fuchs-Hanusch, D.: Leakage localization with differential evolution: a closer look on distance metrics. Procedia Eng. 186, 444–451 (2017).  https://doi.org/10.1016/j.proeng.2017.03.251CrossRefGoogle Scholar
  15. 15.
    Storn, R., Price, K.: Differential evolution a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical Report TR-95-012, Int CS Institute, University of California (1995)Google Scholar
  16. 16.
    Tospornsampan, J., Kita, I., Ishii, M., Kitamura, Y.: Split-pipe design of water distribution network using simulated annealing. Int. J. Comput. Inf. Syst. Sci. 1(4), 28–38 (2007)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Maibeth Sánchez-Rivero
    • 1
  • Marcos Quiñones-Grueiro
    • 1
  • Carlos Cruz Corona
    • 2
  • Antônio J. Silva Neto
    • 3
  • Orestes Llanes-Santiago
    • 1
    Email author
  1. 1.Universidad Tecnológica de La Habana José Antonio Echeverría (Cujae)MarianaoCuba
  2. 2.Universidad de GranadaGranadaSpain
  3. 3.IP-UERJNova FriburgoBrazil

Personalised recommendations