Advertisement

Mobile Architecture for Forest Fire Simulation Using PhyFire-HDWind Model

  • Alejandro Hérnández
  • David Álvarez
  • M. Isabel Asensio
  • Sara RodríguezEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 950)

Abstract

This article presents the design and implementation of a new visualization system for mobile platforms for the PhyFire-HDWind fire simulation model, called AppPhyFire. It proposes a mobile computing infrastructure, based on ArcGIS Server and REST architecture, which improves the user experience in actions associated with the fire simulation process. The PhyFire-HDWind model, of which the system presented here forms part, is a forest fire propagation simulation tool developed by the SINUMCC research group of the University of Salamanca, based on two own simplified physical models, the PhyFire physical fire propagation model, and the HDWind high definition wind field model, resolved using efficient numerical and computational tools and parallel computing, allowing simulation times shorter than the real time fire propagation, integrated into a Geographical Information System, and accessible through a server by the AppPhyFire. The system presented in this article allows a quick visualization of simulations results in mobile devices. This work presents the detailed operation of the system and its phases of operation.

Keywords

Simulation Mobile architectures Prediction models PhyFire HDWind 

Notes

Acknowledgments

This work has been partially supported by the Conserjería de Educación of the regional government, Junta de Castilla y León (SA020U16) and by the University of Salamanca General Foundation (PROTOTIPOS TCUE 2017-18), both with the participation of FEDER funds.

This work was also developed as part of “Virtual-Ledgers-Tecnologías DLT/Blockchain y Cripto-IOT sobre organizaciones virtuales de agentes ligeros y su aplicación en la eficiencia en el transporte de última milla”, ID SA267P18, project cofinanced by Junta Castilla y León, Consejería de Educación, and FEDER funds.

References

  1. 1.
    Finney, M.A.: FARSITE: fire area simulator-model development and evaluation. United States Department of Agriculture Forest Service, Rocky Mountain Research Station, Research Paper RMRS-RP-4, March 1998. Revised February 2004Google Scholar
  2. 2.
    Tymstra, C., Bryce, R.W., Wotton, B.M., Taylor, S.W., Armitage, O.B.: Development and structure of prometheus: the Canadian wildland fire growth simulation. Information Report NOR-X-417 Northern Forestry Centre Canadian Forest Service (2010)Google Scholar
  3. 3.
    Mandel, J., Beezley, J.D., Kochanski, A.K.: Coupled atmosphere-wildland fire modeling with WRF 3.3 and SFIRE 2011. Geosci. Model Dev. 4(3), 591–610 (2011)CrossRefGoogle Scholar
  4. 4.
  5. 5.
  6. 6.
    Monedero, S., Ramirez, J., Cardil, A.: Predicting fire spread and behaviour on the fireline. Wildfire analyst pocket: a mobile app for wildland fire prediction. Ecol. Model. 392, 103–107 (2019)CrossRefGoogle Scholar
  7. 7.
    Sullivan, A.L.: Wildland surface fire spread modelling, 19902007. 1: physical and quasi-physical models. Int. J. Wildl. Fire 18(4), 349–368 (2009)CrossRefGoogle Scholar
  8. 8.
    Sullivan, A.L.: Wildland surface fire spread modelling, 19902007. 2: empirical and quasi-empirical models. Int. J. Wildl. Fire 18(4), 369–386 (2009)CrossRefGoogle Scholar
  9. 9.
    Rothermel, R.C.: A mathematical model for predicting fire spread in wildland fuels. USDA Forest Service Research Paper INT USA, no. INT-115, p. 40 (1972)Google Scholar
  10. 10.
    Asensio, M.I., Ferragut, L.: On a wildland fire model with radiation. Int. J. Numer. Methods Eng. 54(1), 137–157 (2002)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ferragut, L., Asensio, M.I., Monedero, S.: A numerical method for solving convection-reaction-diffusion multivalued equations in fire spread modelling. Adv. Eng. Softw. 38(6), 366–371 (2007)CrossRefGoogle Scholar
  12. 12.
    Ferragut, L., Asensio, M.I., Monedero, S.: Modelling radiation and moisture content in fire spread. Commun. Numer. Methods Eng. 23(9), 819–833 (2006)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Ferragut, L., Asensio, M.I.: A simplified wildland fire model applied to a real case. In: Casas, F., Martínez, V. (eds.) Advances in Differential Equations and Applications. SEMA SIMAI Springer Series, vol. 4, pp. 155–167 (2014Google Scholar
  14. 14.
    Prieto, D., Asensio, M.I., Ferragut, L., Cascón, J.M.: Sensitivity analysis and parameter adjustment in a simplified physical wildland fire model. Adv. Eng. Softw. 90, 98–106 (2015)CrossRefGoogle Scholar
  15. 15.
    Álvarez, D., Prieto, D., Asensio, M.I., Cascón, J.M., Ferragut, L.: Parallel implementation of a simplified semi-physical wildland fire spread model using OpenMP. In: de Pisón, F.M., Urraca, R., Quintián, H., Corchado, E. (eds.) Hybrid Artificial Intelligent Systems: HAIS 2017. LNCS, vol. 10334, pp. 256–267. Springer, Cham (2017)CrossRefGoogle Scholar
  16. 16.
    Asensio, M.I., Ferragut, L., Simon, J.: A convection model for fire spread simulation. Appl. Math. Lett. 18(6) Spec. Iss. 673–677 (2005)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Ferragut, L., Asensio, M.I., Simon, J.: High definition local adjustment model of 3D wind fields performing only 2D computations. Int. J. Numer. Method. Biomed. Eng. 27(4), 510–523 (2011)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Herráez, D.P., Sevilla, M.I.A., Canals, L.F., Barbero, J.M.C., Rodríguez, A.M.: A GIS-based fire spread simulator integrating a simplified physical wildland fire model and a wind field model. Int. J. Geogr. Inf. Sci. 31(11), 2142–2163 (2017)CrossRefGoogle Scholar
  19. 19.
    Chamoso, P., González-Briones, A., Rodríguez, S., Corchado, J.M.: Tendencies of technologies and platforms in smart cities: a state-of-the-art review. Wirel. Commun. Mob. Comput. (2018)Google Scholar
  20. 20.
    Casado-Vara, R., Chamoso, P., De la Prieta, F., Prieto, J., Corchado, J.M.: Non-linear adaptive closed-loop control system for improved efficiency in IoT-blockchain management. Inf. Fusion 49, 227–239 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Alejandro Hérnández
    • 1
  • David Álvarez
    • 2
  • M. Isabel Asensio
    • 2
  • Sara Rodríguez
    • 1
    Email author
  1. 1.BISITE Digital Innovation HubUniversity of SalamancaSalamancaSpain
  2. 2.SINUMCC Numerical Simulation and Scientific ComputationUniversity of SalamancaSalamancaSpain

Personalised recommendations