Skip to main content

A Novel Heuristic Approach for the Simultaneous Selection of the Optimal Clustering Method and Its Internal Parameters for Time Series Data

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 950)

Abstract

Clustering methods have become popular in the last years due to the need of analyzing the high amount of collected data from different fields of knowledge. Nevertheless, the main drawback of clustering is the selection of the optimal method along with its internal parameters in an unsupervised environment. In the present paper, a novel heuristic approach based on the Harmony Search algorithm aided with a local search procedure is presented for simultaneously optimizing the best clustering algorithm (K-means, DBSCAN and Hierarchical clustering) and its optimal internal parameters based on the Silhouette index. Extensive simulation results show that the presented approach outperforms the standard clustering configurations and also other works in the literature in different Time Series and synthetic databases.

Keywords

  • Harmony Search
  • Clustering
  • Internal parameters configuration
  • Optimization
  • Time series clustering

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-20055-8_17
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-20055-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.

References

  1. Lampert, T., Lafabregue, B., Serrette, N., Forestier, G., Crémilleux, B., Vrain, C., Gançarski, P., et al.: Constrained distance based clustering for time-series: a comparative and experimental study. Data Min. Knowl. Disc. 32(6), 1663–1707 (2018)

    MathSciNet  CrossRef  Google Scholar 

  2. Aghabozorgi, S., Shirkhorshidi, A.S., Wah, T.Y.: Time-series clustering-a decade review. Inf. Syst. 53, 16–38 (2015)

    CrossRef  Google Scholar 

  3. MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Oakland, CA, USA, vol. 1, pp. 281–297 (1967)

    Google Scholar 

  4. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis, vol. 344. Wiley, Hoboken (2009)

    MATH  Google Scholar 

  5. Karypis, G., Han, E.H., Kumar, V.: Chameleon: hierarchical clustering using dynamic modeling. Computer 32(8), 68–75 (1999)

    CrossRef  Google Scholar 

  6. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD, vol. 96, pp. 226–231 (1996)

    Google Scholar 

  7. Wang, W., Yang, J., Muntz, R., et al.: STING: a statistical information grid approach to spatial data mining. In: VLDB, vol. 97, pp. 186–195 (1997)

    Google Scholar 

  8. Sheikholeslami, G., Chatterjee, S., Zhang, A.: WaveCluster: a multi-resolution clustering approach for very large spatial databases. In: VLDB, vol. 98, pp. 428–439 (1998)

    Google Scholar 

  9. Thang, T.M., Kim, J.: The anomaly detection by using DBSCAN clustering with multiple parameters. In: 2011 International Conference on Information Science and Applications (ICISA), pp. 1–5. IEEE (2011)

    Google Scholar 

  10. Zhou, H., Wang, P., Li, H.: Research on adaptive parameters determination in DBSCAN algorithm. J. Inf. Comput. Sci. 9(7), 1967–1973 (2012)

    Google Scholar 

  11. Davis, L.: Handbook of Genetic Algorithms (1991)

    Google Scholar 

  12. Shi, Y., et al.: Particle swarm optimization: developments, applications and resources. In: Proceedings of the 2001 Congress on Evolutionary Computation, vol. 1, pp. 81–86. IEEE (2001)

    Google Scholar 

  13. Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–68 (2001)

    CrossRef  Google Scholar 

  14. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

    MathSciNet  CrossRef  Google Scholar 

  15. Sun, J., Chen, W., Fang, W., Wun, X., Xu, W.: Gene expression data analysis with the clustering method based on an improved quantum-behaved particle swarm optimization. Eng. Appl. Artif. Intell. 25(2), 376–391 (2012)

    CrossRef  Google Scholar 

  16. Kao, Y., Lee, S.Y.: Combining k-means and particle swarm optimization for dynamic data clustering problems. In: 2009 IEEE International Conference on Intelligent Computing and Intelligent Systems, ICIS 2009, vol. 1, pp. 757–761. IEEE (2009)

    Google Scholar 

  17. Cui, X., Potok, T.E., Palathingal, P.: Document clustering using particle swarm optimization. In: Proceedings 2005 IEEE on Swarm Intelligence Symposium, SIS 2005, pp. 185–191. IEEE (2005)

    Google Scholar 

  18. Xiao, L., Shao, Z., Liu, G.: K-means algorithm based on particle swarm optimization algorithm for anomaly intrusion detection. In: 2006 The Sixth World Congress on Intelligent Control and Automation, WCICA 2006, vol. 2, pp. 5854–5858. IEEE (2006)

    Google Scholar 

  19. Ahmadyfard, A., Modares, H.: Combining PSO and k-means to enhance data clustering. In: 2008 International Symposium on Telecommunications, IST 2008, pp. 688–691. IEEE (2008)

    Google Scholar 

  20. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

    CrossRef  Google Scholar 

  21. Steinley, D.: Properties of the Hubert-Arable adjusted Rand index. Psychol. Methods 9(3), 386 (2004)

    CrossRef  Google Scholar 

  22. Alswaitti, M., Albughdadi, M., Isa, N.A.M.: Density-based particle swarm optimization algorithm for data clustering. Expert Syst. Appl. 91, 170–186 (2018)

    CrossRef  Google Scholar 

  23. Guan, C., Yuen, K.K.F., Coenen, F.: Particle swarm optimized density-based clustering and classification: supervised and unsupervised learning approaches. Swarm Evol. Comput. 44, 876–896 (2018)

    CrossRef  Google Scholar 

  24. Karami, A., Johansson, R.: Choosing DBSCAN parameters automatically using differential evolution. Int. J. Comput. Appl. 91(7), 1–11 (2014)

    Google Scholar 

  25. Cai, Z., Gong, W., Ling, C.X., Zhang, H.: A clustering-based differential evolution for global optimization. Appl. Soft Comput. 11(1), 1363–1379 (2011)

    CrossRef  Google Scholar 

  26. Mahdavi, M., Abolhassani, H.: Harmony k-means algorithm for document clustering. Data Min. Knowl. Disc. 18(3), 370–391 (2009)

    MathSciNet  CrossRef  Google Scholar 

  27. Dau, H.A., Keogh, E., Kamgar, K., Yeh, C.C.M., Zhu, Y., Gharghabi, S., Ratanamahatana, C.A., Chen, Y., Hu, B., Begum, N., Bagnall, A., Mueen, A., Batista, G.: The UCR time series classification archive, October 2018. https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

  28. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml

  29. Menéndez, H.D., Otero, F.E., Camacho, D.: Medoid-based clustering using ant colony optimization. Swarm Intell. 10(2), 123–145 (2016)

    CrossRef  Google Scholar 

  30. Liao, T.W.: Clustering of time series data–a survey. Pattern Recogn. 38(11), 1857–1874 (2005)

    CrossRef  Google Scholar 

  31. Müllner, D.: Modern hierarchical, agglomerative clustering algorithms. arXiv preprint arXiv:1109.2378 (2011)

  32. Birant, D., Kut, A.: ST-DBSCAN: an algorithm for clustering spatial-temporal data. Data Knowl. Eng. 60(1), 208–221 (2007)

    CrossRef  Google Scholar 

  33. Almeida, H., Guedes, D., Meira, W., Zaki, M.J.: Is there a best quality metric for graph clusters? In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 44–59. Springer (2011)

    Google Scholar 

  34. Kumar, V., Chhabra, J.K., Kumar, D.: Effect of harmony search parameters’ variation in clustering. Procedia Technol. 6, 265–274 (2012)

    CrossRef  Google Scholar 

  35. Kodinariya, T.M., Makwana, P.R.: Review on determining number of cluster in k-means clustering. Int. J. 1(6), 90–95 (2013)

    Google Scholar 

Download references

Acknowledgments

This research has been supported by a TECNALIA Research and Innovation PhD Scholarship, ELKARTEK program (SENDANEU KK-2018/00032) and the HAZITEK program (DATALYSE ZL-2018/00765) of the Basque Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Navajas-Guerrero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Navajas-Guerrero, A., Manjarres, D., Portillo, E., Landa-Torres, I. (2020). A Novel Heuristic Approach for the Simultaneous Selection of the Optimal Clustering Method and Its Internal Parameters for Time Series Data. In: Martínez Álvarez, F., Troncoso Lora, A., Sáez Muñoz, J., Quintián, H., Corchado, E. (eds) 14th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2019). SOCO 2019. Advances in Intelligent Systems and Computing, vol 950. Springer, Cham. https://doi.org/10.1007/978-3-030-20055-8_17

Download citation