Advertisement

Ensemble Deep Learning for Forecasting \(^{222}Rn\) Radiation Level at Canfranc Underground Laboratory

  • Miguel Cárdenas-MontesEmail author
  • Iván Méndez-Jiménez
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 950)

Abstract

Ensemble Deep Learning Architectures have demonstrated to improve the performance in comparison with the individual architectures composing the ensemble. In the current work, an ensemble of variants of Convolutional and Recurrent Neural Networks architectures are applied to the prediction of the \(^{222}Rn\) level at the Canfranc Underground Laboratory (Spain). To predict the low-level periods allows appropriately scheduling the maintenance operations in the experiments hosted in the laboratory. As a consequence of the application of Ensemble Deep Learning, an improvement of the forecasting capacity is stated. Furthermore, the learned lessons from this work can be extrapolated to other underground laboratories around the world.

Keywords

Ensemble Time series analysis Deep learning Forecasting Convolutional Neural Networks Recurrent Neural Networks Seasonal and Trend Decomposition Using Loess 

Notes

Acknowledgment

The research leading to these results has received funding by the Spanish Ministry of Economy and Competitiveness (MINECO) for funding support through the grant FPA2016-80994-C2-1-R, and “Unidad de Excelencia María de Maeztu”: CIEMAT - FÍSICA DE PARTÍCULAS through the grant MDM-2015-0509.

IMJ is co-funded in a 91.89 percent by the European Social Fund within the Youth Employment Operating Program, for the programming period 2014–2020, as well as Youth Employment Initiative (IEJ). IMJ is also co-funded through the Grants for the Promotion of Youth Employment and Implantation of Youth Guarantee in Research and Development and Innovation (I+D+i) from the MINECO.

The authors would like to thank Roberto Santorelli, Pablo García Abia and Vicente Pesudo for useful comments regarding the Physics related aspects of this work, and the Underground Laboratory of Canfranc by providing valuable feedback.

References

  1. 1.
    Bettini, A.: New underground laboratories: Europe, Asia and the Americas. Phys. Dark Universe 4(Suppl. C), 36–40 (2014).  https://doi.org/10.1016/j.dark.2014.05.006. dARK TAUP2013CrossRefGoogle Scholar
  2. 2.
    Chniti, G., Bakir, H., Zaher, H.: E-commerce time series forecasting using LSTM neural network and support vector regression. In: Proceedings of the International Conference on Big Data and Internet of Thing, BDIOT 2017, pp. 80–84. ACM, New York (2017).  https://doi.org/10.1145/3175684.3175695
  3. 3.
    Chollet, F., et al.: Keras (2015). https://github.com/fchollet/keras
  4. 4.
    Cleveland, R.B., Cleveland, W.S., McRae, J., Terpenning, I.: STL: a seasonal-trend decomposition procedure based on loess. J. Off. Stat. 3, 3–73 (1990)Google Scholar
  5. 5.
    Gamboa, J.C.B.: Deep learning for time-series analysis. CoRR abs/1701.01887 (2017). http://arxiv.org/abs/1701.01887
  6. 6.
    García, S., Fernández, A., Luengo, J., Herrera, F.: A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability. Soft Comput. 13(10), 959–977 (2009)CrossRefGoogle Scholar
  7. 7.
    García, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC 2005 special session on real parameter optimization. J. Heuristics 15(6), 617–644 (2009)CrossRefGoogle Scholar
  8. 8.
    Garcia-Pedrero, A., Gomez-Gil, P.: Time series forecasting using recurrent neural networks and wavelet reconstructed signals. In: 2010 20th International Conference on Electronics Communications and Computers (CONIELECOMP), pp. 169–173, February 2010.  https://doi.org/10.1109/CONIELECOMP.2010.5440775
  9. 9.
    Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)zbMATHGoogle Scholar
  10. 10.
    Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997).  https://doi.org/10.1162/neco.1997.9.8.1735CrossRefGoogle Scholar
  11. 11.
    Lago, J., Ridder, F.D., Schutter, B.D.: Forecasting spot electricity prices: deep learning approaches and empirical comparison of traditional algorithms. Appl. Energy 221, 386–405 (2018).  https://doi.org/10.1016/j.apenergy.2018.02.069, http://www.sciencedirect.com/science/article/pii/S030626191830196XCrossRefGoogle Scholar
  12. 12.
    LeCun, Y.: Generalization and network design strategies. University of Toronto, Technical report (1989)Google Scholar
  13. 13.
    Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998).  https://doi.org/10.1109/5.726791CrossRefGoogle Scholar
  14. 14.
    Lipton, Z.C.: A critical review of recurrent neural networks for sequence learning. CoRR abs/1506.00019 (2015). http://arxiv.org/abs/1506.00019
  15. 15.
    Méndez-Jiménez, I., Cárdenas-Montes, M.: Modelling and forecasting of the \(^{222}{R}n\) radiation level time series at the Canfranc Underground Laboratory. In: Proceedings of Hybrid Artificial Intelligent Systems - 13th International Conference, HAIS 2018, Oviedo, Spain, 20–22 June 2018. Lecture Notes in Computer Science, vol. 10870, pp. 158–170. Springer (2018)Google Scholar
  16. 16.
    Méndez-Jiménez, I., Cárdenas-Montes, M.: Time series decomposition for improving the forecasting performance of convolutional neural networks. In: Proceedings of Advances in Artificial Intelligence - 18th Conference of the Spanish Association for Artificial Intelligence, CAEPIA 2018, Granada, Spain, 23–26 October 2018. Lecture Notes in Computer Science, vol. 11160, pp. 87–97. Springer (2018).  https://doi.org/10.1007/978-3-030-00374-6_9CrossRefGoogle Scholar
  17. 17.
    Qiu, X., Zhang, L., Ren, Y., Suganthan, P.N., Amaratunga, G.A.J.: Ensemble deep learning for regression and time series forecasting. In: 2014 IEEE Symposium on Computational Intelligence in Ensemble Learning, CIEL 2014, Orlando, FL, USA, 9–12 December 2014, pp. 21–26 (2014).  https://doi.org/10.1109/CIEL.2014.7015739
  18. 18.
    Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986).  https://doi.org/10.1038/323533a0CrossRefzbMATHGoogle Scholar
  19. 19.
    Schuster, M., Paliwal, K.: Bidirectional recurrent neural networks. Trans. Sig. Proc. 45(11), 2673–2681 (1997).  https://doi.org/10.1109/78.650093CrossRefGoogle Scholar
  20. 20.
    Walid, A.: Recurrent neural network for forecasting time series with long memory pattern. J. Phys.: Conf. Ser. 824(1), 012038 (2017). http://stacks.iop.org/1742-6596/824/i=1/a=012038Google Scholar
  21. 21.
    Wang, H.Z., Li, G.Q., Wang, G.B., Peng, J.C., Jiang, H., Liu, Y.T.: Deep learning based ensemble approach for probabilistic wind power forecasting. Appl. Energy 188, 56–70 (2017).  https://doi.org/10.1016/j.apenergy.2016.11.111. http://www.sciencedirect.com/science/article/pii/S0306261916317421CrossRefGoogle Scholar
  22. 22.
    Wang, Z., Yan, W., Oates, T.: Time series classification from scratch with deep neural networks: a strong baseline. CoRR abs/1611.06455 (2016). http://arxiv.org/abs/1611.06455
  23. 23.
    Zheng, Y., Liu, Q., Chen, E., Ge, Y., Zhao, J.L.: Time series classification using multi-channels deep convolutional neural networks. In: Li, F., Li, G., Hwang, S.W., Yao, B., Zhang, Z. (eds.) Web-Age Information Management, pp. 298–310. Springer, Cham (2014)Google Scholar
  24. 24.
    Zheng, Y., Liu, Q., Chen, E., Ge, Y., Zhao, J.L.: Exploiting multi-channels deep convolutional neural networks for multivariate time series classification. Front. Comput. Sci. 10(1), 96–112 (2016).  https://doi.org/10.1007/s11704-015-4478-2CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Centro de Investigaciones Energéticas Medioambientales y TecnológicasMadridSpain

Personalised recommendations