Edge Computing Architectures in Industry 4.0: A General Survey and Comparison

  • Inés Sittón-CandanedoEmail author
  • Ricardo S. Alonso
  • Sara Rodríguez-González
  • José Alberto García Coria
  • Fernando De La Prieta
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 950)


Edge Computing represents the computing and networking tasks that IoT (Internet of Things) devices perform at the Edge of the network in communication with the remote Cloud. In this sense, recent researches try to demonstrate that Edge Computing architectures represent optimal solutions in order to minimize latency, improve privacy and reduce bandwidth and related costs in IoT-based scenarios, such as Smart Cities, Smart Energy, Smart Farming or Industry 4.0. This work is a review of the main existing Edge Computing reference architectures aimed at Industry 4.0 proposed by the Edge Computing Consortium, the FAR-Edge Project and the Industrial Internet Consortium for Industry 4.0. This paper includes a comparison among these reference architectures, as well as their most important features in order to build a new Edge Computing Reference Architecture as future work.


Edge Computing Internet of Things Cloud Computing Reference architectures Industry 4.0 



This work was developed as part of the project “Virtual-Ledgers: Tecnologías DLT/Blockchain y Cripto-IOT sobre organizaciones virtuales de agentes ligeros y su aplicación en la eficiencia en el transporte de última milla”, ID SA267P18, project co-financed by Junta de Castilla y León, Consejería de Educación (Ministry of Education of the Government of Castile and León, Spain), and FEDER funds. Inés Sittón has been supported by IFARHU – SENACYT scholarship program (Government of Panama).


  1. 1.
    Chamoso, P., Prieta, F.D.L.: Swarm-based smart city platform: a traffic application. ADCAIJ: Adv. Distrib. Comput. Artif. Intell. J. 4(2), 89–98 (2015)CrossRefGoogle Scholar
  2. 2.
    García, O., Chamoso, P., Prieto, J., Rodríguez, S., de la Prieta, F.: A serious game to reduce consumption in smart buildings. In: Highlights of Practical Applications of Cyber-physical Multi-agent Systems. Communications in Computer and Information Science, pp. 481–493. Springer (2017)Google Scholar
  3. 3.
    Sittón-Candanedo, I., Rodríguez, S.: Pattern extraction for the design of predictive models in industry 4.0., pp. 258–261 (2018)Google Scholar
  4. 4.
    De La Prieta, F., Corchado, J.M.: Cloud Computing and Multiagent Systems, a Promising Relationship. Springer, Cham (2016)Google Scholar
  5. 5.
    Cisco: Cisco Global Cloud Index: Forecast and Methodology, 2016–2021 (2018). Accesed 20 Nov 2018
  6. 6.
    Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision and challenges. IEEE Internet Things J. 3(5), 637–646 (2016)CrossRefGoogle Scholar
  7. 7.
    Garcia, P., Montresor, A., Epema, D., Datta, A., Higashino, T., Iamnitchi, A., Barcellos, M., Felber, P., Riviere, E.: Edge-centric computing: vision and challenges. ACM SIGCOMM Comput. Commun. Rev. 45(5), 37–42 (2015)CrossRefGoogle Scholar
  8. 8.
    Chamoso, P., González-Briones, A., Rodríguez, S., Corchado, J.M.: Tendencies of technologies and platforms in smart cities: a state-of-the-art review. Wirel. Commun. Mob. Comput. 2018 (2018). Scholar
  9. 9.
    Taleb, T., Samdanis, K., Mada, B., Flinck, H., Dutta, S., Sabella, D.: On multi-access edge computing: a survey of the emerging 5G network edge cloud architecture and orchestration. IEEE Commun. Surv. Tutor. 19(3), 1657–1681 (2017)CrossRefGoogle Scholar
  10. 10.
    FAR-EDGE Project: FAR-EDGE Project H2020 (2017). Accessed 20 Nov 2018
  11. 11.
    Edge Computing Consortium, Alliance of Industrial Internet: Edge Computing Reference Architecture 2.0. Technical report, Edge Computing Consortium (2017). Accessed 20 Nov 2018
  12. 12.
    Tseng, M., Canaran, T.E., Canaran, L.: Introduction to edge computing in IIoT. Technical report, Industrial Internet Consortium (2018). Accessed 20 Nov 2018
  13. 13.
    ISO/IEC/IEEE 42010: Systems and software engineering - engineering. Technical report, ISO/IEC/IEEE 42010 (2011)Google Scholar
  14. 14.
    Ganz, F., Puschmann, D., Barnaghi, P., Carrez, F.: A practical evaluation of information processing and abstraction techniques for the internet of things. IEEE Internet Things J. 2(4), 340–354 (2015)CrossRefGoogle Scholar
  15. 15.
    Alonso, R.S., Tapia, D.I., Bajo, J., García, Ó., de Paz, J.F., Corchado, J.M.: Implementing a hardware-embedded reactive agents platform based on a service-oriented architecture over heterogeneous wireless sensor networks. Ad Hoc Netw. 11(1), 151–166 (2013)CrossRefGoogle Scholar
  16. 16.
    Razzaque, M., Milojevic-Jevric, M., Palade, A., Clarke, S.: Middleware for internet of things: a survey. IEEE Internet Things J. 3(1), 70–95 (2016)CrossRefGoogle Scholar
  17. 17.
    García, Ó., Alonso, R.S., Prieto, J., Corchado, J.M.: Energy efficiency in public buildings through context-aware social computing. Sensors 17(4), 826 (2017)CrossRefGoogle Scholar
  18. 18.
    Jing, Q., Vasilakos, A.V., Wan, J., Lu, J., Qiu, D.: Security of the Internet of Things: perspectives and challenges. Wirel. Netw. 20(8), 2481–2501 (2014)CrossRefGoogle Scholar
  19. 19.
    Brogi, A., Forti, S.: QoS-aware deployment of IoT applications through the fog. IEEE Internet Things J. 4(5), 1–8 (2017)CrossRefGoogle Scholar
  20. 20.
    Lin, J., Yu, W., Zhang, N., Yang, X., Zhang, H., Zhao, W.: A survey on internet of things: architecture, enabling technologies, security and privacy, and applications. IEEE Internet Things J. 4(5), 1125–1142 (2017)CrossRefGoogle Scholar
  21. 21.
    Satyanarayanan, M.: The emergence of edge computing. Computer 50(1), 30–39 (2017)CrossRefGoogle Scholar
  22. 22.
    Isaja, M., Soldatos, J., Gezer, V.: Combining edge computing and blockchains for flexibility and performance in industrial automation. In: International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies (UBICOMM) (c), pp. 159–164 (2017)Google Scholar
  23. 23.
    Shi, W., Schahram, D.: The promise of edge computing. Computer 49(0018), 78–81 (2016)CrossRefGoogle Scholar
  24. 24.
    Moghaddam, M., Cadavid, M.N., Kenley, C.R., Deshmukh, A.V.: Reference architectures for smart manufacturing: a critical review. J. Manuf. Syst. 49, 215–225 (2018)CrossRefGoogle Scholar
  25. 25.
    Khan, M.A., Salah, K.: IoT security: review, blockchain solutions, and open challenges. Futur. Gener. Comput. Syst. 82, 395–411 (2018)CrossRefGoogle Scholar
  26. 26.
    Faia, R., Pinto, T., Vale, Z.: Dynamic fuzzy clustering method for decision support in electricity markets negotiation. ADCAIJ: Adv. Distrib. Comput. Artif. Intell. J. 5(1), 23–35 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Inés Sittón-Candanedo
    • 1
    Email author
  • Ricardo S. Alonso
    • 1
  • Sara Rodríguez-González
    • 1
  • José Alberto García Coria
    • 1
  • Fernando De La Prieta
    • 1
  1. 1.IoT Digital Innovation HUBUniversity of SalamancaSalamancaSpain

Personalised recommendations