Skip to main content

Existence and Stability Properties of Almost Periodic Solutions in Discrete Almost Periodic Systems

Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS,volume 287)

Abstract

In order to obtain the existence of almost periodic solutions of both linear and nonlinear almost periodic discrete systems: \( x(n+1) = A(n)x(n) \) and \( x_{i}(n+1)=\sum _{j=1}^{m}a_{ij}(n)g_{j}(x_{j}(n)) \quad \text{ for } \quad 1 \le i \le m \), respectively, we shall consider between certain stability properties, which are referred to as uniformly asymptotically stable, and the diagonal dominance matrix condition.

Keywords

  • Almost periodic solutions on \( \mathbf {Z^{+}} \)
  • Linear and nonlinear almost periodic discrete systems
  • Uniformly asymptotically stable
  • Diagonal dominance matrix condition

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-20016-9_11
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-20016-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)

References

  1. Carleman, T.: Problems Mathematiques dans la Theorie Cinetique des Gaz. Publ. Sci. Inst. Mittag-Leffler (1957)

    Google Scholar 

  2. Coppel, W.A.: Stability and Asymptotic Behavior of Differential Equations. Heath Math, Monog (1965)

    MATH  Google Scholar 

  3. Corduneanu, C.: Almost periodic discrete processes. Lib. Math. 2, 159–169 (1982)

    MathSciNet  MATH  Google Scholar 

  4. Diagana, T., Elaydi, S., Yakubu, A.A.: Population models in almost periodic environments. J. Differ. Equ. Appl. 13, 239–260 (2007)

    CrossRef  MathSciNet  Google Scholar 

  5. Elaydi, S.: An Introduction to Difference Equations, 3rd edn. Springer (2005)

    Google Scholar 

  6. Fink, A.M.: Almost Periodic Differential Equations. Lecture Notes in Mathematics, vol. 377. Springer (1974)

    Google Scholar 

  7. Hamaya, Y.: Existence and stability property of almost periodic solutions in discrete almost periodic systems. Adv. Pure Math. 8, 463–484 (2018)

    Google Scholar 

  8. Jenks, R.D.: Homogeneous multidimensional differential systems for mathematical models. J. Differ. Equ. 4, 549–565 (1968)

    CrossRef  MathSciNet  Google Scholar 

  9. Krasnoselskii, M.A.: Positive Solutions of Operator Equations. P. Noordhoff Ltd, The Netherlands (1964)

    Google Scholar 

  10. Massera, J.M., Schaffer, J.J.: Linear differential equations and functional analysis I. Ann. Math. 67, 517–573 (1958)

    CrossRef  MathSciNet  Google Scholar 

  11. Nakajima, F.: Existence and stability of almost periodic solutions in almost periodic systems. Publ. RIMS Kyoto Univ. 12, 31–47 (1976)

    CrossRef  MathSciNet  Google Scholar 

  12. Nakajima, F.: A stability criterion of diagonal dominance type. SIAM J. Math. Anal. 9, 815–824 (1978)

    CrossRef  MathSciNet  Google Scholar 

  13. Sacker, R. J., Sell, J. R.: Almost periodicity, Ricker map, Beverton-Holt map and others, a general method. J. Diff. Equ. Appl. 23(7), 1286–1297 (2017)

    Google Scholar 

  14. Seifert, G.: Almost periodic solutions and asymptotic stability. J. Math. Anal. Appl. 2(1), 136–149 (1968)

    Google Scholar 

  15. Varga, R.S.: Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs, NJ (1962)

    MATH  Google Scholar 

  16. Yoshizawa, T.: Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions, Applied Mathematical Sciences, vol. 14. Springer (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro Hamaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Hamaya, Y. (2019). Existence and Stability Properties of Almost Periodic Solutions in Discrete Almost Periodic Systems. In: Elaydi, S., Pötzsche, C., Sasu, A. (eds) Difference Equations, Discrete Dynamical Systems and Applications. ICDEA 2017. Springer Proceedings in Mathematics & Statistics, vol 287. Springer, Cham. https://doi.org/10.1007/978-3-030-20016-9_11

Download citation