Skip to main content

Abstract

This work proposes a LabVIEW framework suitable for simulating and on-the-fly testing a hardware implementation of the Arrow lightweight pseudorandom generator. Its aim is twofold. The first objective is to provide a framework to simulate the pseudorandom generator behavior in a personal computer, allowing to modify dynamically the configuration parameters of the generator. Moreover, to visualize the randomness of the output sequences useful techniques like the chaos game and return maps are used. The second objective is to generate an architecture implementing the Arrow algorithm which can be downloaded into a real Complex Programmable Logic Device or a Field-Programmable Gate Array. Plots are shown which demonstrate the usefulness of the proposed framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Minoli, D., Sohraby, K., Occhiogrosso, B., Kouns, J.: Security considerations for IoT support of e-Health applications. In: Hassan, Q.F., ur Rehman Khan, A., Madani, S.A. (eds.) Internet of Things. Challenges, Advances, and Applications, pp. 321–346. Chapman and Hall/CRC (2018). Chap. 16

    Google Scholar 

  2. Sagahyroon, A., Aburukba, R., Aloul, F.: The Internet of Things and e-Health: remote patients monitoring. In: Hassan, Q.F., ur Rehman Khan, A., Madani, S.A. (eds.) Internet of Things. Challenges, Advances, and Applications, pp. 303–321. Chapman and Hall/CRC (2018). Chap. 15

    Google Scholar 

  3. Sfar, A.R., Natalizio, E., Challal, Y., Chtourou, Z.: A roadmap for security challenges in the Internet of Things. Digit. Commun. Netw. 4, 118–137 (2018)

    Article  Google Scholar 

  4. Grammatikis, P.I.R., Sarigiannidis, P.G., Moscholios, I.D.: Securing the Internet of Things: challenges, threats and solutions. Internet Things J. 5, 41–70 (2019)

    Article  Google Scholar 

  5. Misra, S., Maheswaran, M., Hashmi, S.: Security Challenges and Approaches in Internet of Things. Springer (2017)

    Google Scholar 

  6. Li, S., Xu, L.D.: Securing the Internet of Things, 1st edn. Syngress-Elsevier, Cambridge (2017)

    Google Scholar 

  7. Biryukov, A., Perrin, L.: State of the art in lightweight symmetric cryptography. IACR Cryptology ePrint Archive, p. 511 (2017)

    Google Scholar 

  8. ENISA: Good practices for security of internet of things in the context of smart manufacturing. European Union Agency for Network and Information Security. Technical report (2018). https://www.enisa.europa.eu/publications/good-practices-for-security-of-iot

  9. Orúe López, A.B., Hernández Encinas, L., Martín Muñoz, A., Montoya Vitini, F.: A lightweight pseudorandom number generator for securing the Internet of Things. IEEE Access 5, 27800–27806 (2017)

    Article  Google Scholar 

  10. Schindler, W.: Random number generators for cryptographic applications. In: Koç Ç.K. (eds.) Cryptographic Engineering, pp. 2–23 (2009). Cap. 2

    Google Scholar 

  11. Bassham, L., Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E., Leigh, S., Levenson, M., Vangel, M., Banks, D., Heckert, N., Dray, J.: NIST special publication 800–22 Rev 1a. A statistical test suite for random and PRNG for cryptographic applications. U.S., Department of Commerce/NIST (2010)

    Google Scholar 

  12. Marsaglia, G.: Diehard, a battery of tests for RNGs (2002). https://archive.is/IrySf

  13. Santoro, R., Sentieys, O., Roy, S.: On-the-fly evaluation of FPGA-based true random number generator. In: Proceedings of the 2009 IEEE Computer Society Annual Symposium on VLSI, pp. 55–60 (2009)

    Google Scholar 

  14. Bhaskar, P., Gawande, P.D.: A survey on implementation of random number generator in FPGA. Int. J. Sci. Res. 4(3), 1590–1592 (2015)

    Google Scholar 

  15. Tuncer, T., Avaroğlu, E.: Random number generation with LFSR based stream cipher algorithms. In: Proceedings of the 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 171–175, May 2017

    Google Scholar 

  16. Souaki, G., Halim, K.: Random number generation based on MCU sources for IoT application. In: Proceedings of the 2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), pp. 1–6, May 2017

    Google Scholar 

  17. Bakiri, M., Guyeux, C., Couchot, J.-F., Oudjida, A.K.: Survey on hardware implementation of random number generators on FPGA: theory and experimental analyses. Comput. Sci. Rev. 27, 135–153 (2018)

    Article  MathSciNet  Google Scholar 

  18. National Instruments: Tutorial: State machines (2018). http://www.ni.com/tutorial/7595/en/

  19. Pérez, G., Cerdeira, H.A.: Extracting messages masked by chaos. Phys. Rev. Lett. 74, 1970–1973 (1995)

    Article  Google Scholar 

  20. Orúe, A.B., Montoya, F., Hernández Encinas, L.: Trifork, a new pseudorandom number generator based on lagged Fibonacci maps. J. Comput. Sci. Eng. 2(2), 46–61 (2010)

    Google Scholar 

  21. Peitgen, H.-O., Jürgens, H., Saupe, D.: Chaos and Fractals. New Frontiers of Science. Springer, New York (2004)

    Book  Google Scholar 

  22. Jeffrey, H.: Chaos game visualization of sequences. Comput. Graph. 16(1), 25–33 (1992)

    Article  Google Scholar 

Download references

Acknowledgments

This research has been partially supported by Ministerio de Economía, Industria y Competitividad (MINECO), Agencia Estatal de Investigación (AEI), and Fondo Europeo de Desarrollo Regional (FEDER, EU) under project COPCIS, reference TIN2017-84844-C2-1-R, and by the Comunidad de Madrid (Spain) under the project CYNAMON (P2018/TCS-4566), co-financed with FSE and FEDER EU funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amalia Beatriz Orúe López .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Blanco Blanco, A. et al. (2020). On-the-Fly Testing an Implementation of Arrow Lightweight PRNG Using a LabVIEW Framework. In: Martínez Álvarez, F., Troncoso Lora, A., Sáez Muñoz, J., Quintián, H., Corchado, E. (eds) International Joint Conference: 12th International Conference on Computational Intelligence in Security for Information Systems (CISIS 2019) and 10th International Conference on EUropean Transnational Education (ICEUTE 2019). CISIS ICEUTE 2019 2019. Advances in Intelligent Systems and Computing, vol 951. Springer, Cham. https://doi.org/10.1007/978-3-030-20005-3_18

Download citation

Publish with us

Policies and ethics