Agrawal, M., Allender, E., Rudich, S.: Reductions in circuit complexity: an isomorphism theorem and a gap theorem. J. Comput. Syst. Sci. 57(2), 127–143 (1998)
MathSciNet
CrossRef
Google Scholar
Ajtai, M.: \(\varSigma ^1_1\)-formulae on finite structures. Ann. Pure Appl. Log. 24, 1–48 (1983)
CrossRef
Google Scholar
Allender, E., Buhrman, H., Kouckỳ, M., van Melkebeek, D., Ronneburger, D.: Power from random strings. SIAM J. Comput. 35(6), 1467–1493 (2006)
MathSciNet
CrossRef
Google Scholar
Allender, E., Das, B.: Zero knowledge and circuit minimization. Inf. Comput. 256, 2–8 (2017)
MathSciNet
CrossRef
Google Scholar
Allender, E., Grochow, J.A., van Melkebeek, D., Moore, C., Morgan, A.: Minimum circuit size, graph isomorphism, and related problems. SIAM J. Comput. 47(4), 1339–1372 (2018)
MathSciNet
CrossRef
Google Scholar
Allender, E., Hellerstein, L., McCabe, P., Pitassi, T., Saks, M.: Minimizing disjunctive normal form formulas and \({\sf AC}^0\) circuits given a truth table. SIAM J. Comput. 38(1), 63–84 (2008)
MathSciNet
CrossRef
Google Scholar
Allender, E., Hirahara, S.: New insights on the (non)-hardness of circuit minimization and related problems. In: Proceedings of 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017) (2017)
Google Scholar
Allender, E., Holden, D., Kabanets, V.: The minimum oracle circuit size problem. Comput. Complex. 26(2), 469–496 (2017)
MathSciNet
CrossRef
Google Scholar
Allender, E., Kouckỳ, M., Ronneburger, D., Roy, S.: The pervasive reach of resource-bounded Kolmogorov complexity in computational complexity theory. J. Comput. Syst. Sci. 77(1), 14–40 (2011)
MathSciNet
CrossRef
Google Scholar
Allender, E., Loui, M.C., Regan, K.W.: Reducibility and completeness. In: Atallah, M.J., Blanton, M. (eds.) Algorithms and Theory of Computation Handbook, pp. 23–23. Chapman & Hall/CRC, New York (2010)
Google Scholar
Arora, S.: AC\(^0\)-reductions cannot prove the PCP theorem (1995, unpublished Manuscript)
Google Scholar
Furst, M., Saxe, J.B., Sipser, M.: Parity, circuits, and the polynomial-time hierarchy. Math. Syst. Theory 17(1), 13–27 (1984)
MathSciNet
CrossRef
Google Scholar
Golovnev, A., Ilango, R., Impagliazzo, R., Kabanets, V., Kolokolova, A., Tal, A.: AC\(^0[p]\) lower bounds against MCSP via the coin problem. Technical report TR19-018, Electronic Colloquium on Computational Complexity (ECCC) (2019). To appear in ICALP 2019
Google Scholar
Hatami, P., Kulkarni, R., Pankratov, D.: Variations on the sensitivity conjecture. Theory Comput. Grad. Surv. 4, 1–27 (2011)
Google Scholar
Hirahara, S.: Non-black-box worst-case to average-case reductions within NP. In: 59th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 247–258 (2018)
Google Scholar
Hirahara, S., Santhanam, R.: On the average-case complexity of MCSP and its variants. In: Proceedings of 32nd Conference on Computational Complexity (CCC). LIPIcs-Leibniz International Proceedings in Informatics, vol. 79. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)
Google Scholar
Hirahara, S., Watanabe, O.: Limits of minimum circuit size problem as oracle. In: Proceedings of 31st Conference on Computational Complexity (CCC). LIPIcs-Leibniz International Proceedings in Informatics, vol. 50. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2016)
Google Scholar
Hitchcock, J., Pavan, A.: On the NP-completeness of the minimum circuit size problem. In: FSTTCS (2015)
Google Scholar
Ilango, R.: AC\(^0[p]\) lower bounds and NP-hardness for variants of MCSP. Technical report TR19-021, Electronic Colloquium on Computational Complexity (ECCC) (2019)
Google Scholar
Impagliazzo, R., Kabanets, V., Volkovich, I.: The power of natural properties as oracles. In: LIPIcs-Leibniz International Proceedings in Informatics, vol. 102. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2018)
Google Scholar
Kabanets, V., Cai, J.Y.: Circuit minimization problem. In: Proceedings of 32nd ACM Symposium on Theory of Computing (STOC), New York, NY, USA, pp. 73–79 (2000)
Google Scholar
Murray, C.D., Williams, R.R.: On the (non) NP-hardness of computing circuit complexity. Theory Comput. 13(1), 1–22 (2017)
MathSciNet
CrossRef
Google Scholar
Oliveira, I., Pich, J., Santhanam, R.: Hardness magnification near state-of-the-art lower bounds. In: Electronic Colloquium on Computational Complexity 158 (2018)
Google Scholar
Oliveira, I., Santhanam, R.: Conspiracies between learning algorithms, circuit lower bounds and pseudorandomness. In: Proceedings of 32nd Conference on Computational Complexity (CCC), vol. 79, pp. 18:1–18:49. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)
Google Scholar
Oliveira, I.C., Santhanam, R.: Hardness magnification for natural problems. In: Symposium on Foundations of Computer Science (FOCS), pp. 65–76 (2018)
Google Scholar
Razborov, A., Rudich, S.: Natural proofs. In: Proceedings of 26th ACM Symposium on Theory of Computing (STOC), New York, NY, USA, pp. 204–213 (1994)
Google Scholar
Rudow, M.: Discrete logarithm and minimum circuit size. Inf. Process. Lett. 128, 1–4 (2017)
MathSciNet
CrossRef
Google Scholar
Trakhtenbrot, B.: A survey of Russian approaches to perebor (brute-force searches) algorithms. IEEE Ann. Hist. Comput. 6(4), 384–400 (1984)
MathSciNet
CrossRef
Google Scholar
Vollmer, H.: Introduction to Circuit Complexity: A Uniform Approach. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-662-03927-4
CrossRef
MATH
Google Scholar