Advertisement

Manipulating Water and Heat with Nanoengineered Surfaces

  • Yangying Zhu
  • Heena K. Mutha
  • Yajing Zhao
  • Evelyn N. WangEmail author
Chapter
Part of the Women in Engineering and Science book series (WES)

Abstract

Water is a key component in numerous processes impacting our daily lives including thermal management, energy production, and desalination. While significant efforts have been made to improve these processes, recent advancement of nanotechnology has allowed for precise control of surface structuring and chemistry which plays a central role in manipulating water, and thus has realized unprecedented improvement. In this chapter, we review some of the key progress enabled by nanoengineered surfaces for applications in thermal management of electronics, condensation heat transfer for power generation, and water desalination, and provide an outlook for future directions and opportunities.

Keywords

Engineered surfaces Thermal management Water desalination Condensation 

References

  1. Blair, J. W., & Murphy, G. W. (1960). Electrochemical demineralization of water with porous electrodes of large surface area. In Saline water conversion (pp. 206–223). Memphis, TN: American Chemical Society.CrossRefGoogle Scholar
  2. Boinovich, L. B., & Emelyanenko, A. M. (2008). Hydrophobic materials and coatings: Principles of design, properties and applications. Russian Chemical Reviews, 77, 583.  https://doi.org/10.1070/RC2008v077n07ABEH003775.CrossRefGoogle Scholar
  3. Boreyko, J. B., & Chen, C.-H. (2009). Self-propelled dropwise condensate on superhydrophobic surfaces. Physical Review Letters, 103, 184501.  https://doi.org/10.1103/PhysRevLett.103.184501.CrossRefGoogle Scholar
  4. Cho, H. J., Preston, D. J., Zhu, Y., & Wang, E. N. (2016). Nanoengineered materials for liquid–vapour phase-change heat transfer. Nature Reviews Materials, 2, 16092.  https://doi.org/10.1038/natrevmats.2016.92.CrossRefGoogle Scholar
  5. Cohen, I., Avraham, E., Noked, M., et al. (2011). Enhanced charge efficiency in capacitive deionization achieved by surface-treated electrodes and by means of a third electrode. Journal of Physical Chemistry C, 115, 19856–19863.  https://doi.org/10.1021/jp206956a.CrossRefGoogle Scholar
  6. David, M. P., Miler, J., Steinbrenner, J. E., et al. (2011a). Hydraulic and thermal characteristics of a vapor venting two-phase microchannel heat exchanger. International Journal of Heat and Mass Transfer, 54, 5504–5516.  https://doi.org/10.1016/j.ijheatmasstransfer.2011.07.040.CrossRefGoogle Scholar
  7. David, M. P., Steinbrenner, J. E., Miler, J., & Goodson, K. E. (2011b). Adiabatic and diabatic two-phase venting flow in a microchannel. International Journal of Multiphase Flow, 37, 1135–1146.  https://doi.org/10.1016/j.ijmultiphaseflow.2011.06.013.CrossRefGoogle Scholar
  8. Elimelech, M., & Phillip, W. A. (2011). The future of seawater desalination: Energy, technology, and the environment. Science, 333, 712–717.  https://doi.org/10.1126/science.1200488.CrossRefGoogle Scholar
  9. Fazeli, A., Mortazavi, M., & Moghaddam, S. (2015). Hierarchical biphilic micro/nanostructures for a new generation phase-change heat sink. Applied Thermal Engineering, 78, 380–386.  https://doi.org/10.1016/j.applthermaleng.2014.12.073.CrossRefGoogle Scholar
  10. Greenlee, L. F., Lawler, D. F., Freeman, B. D., et al. (2009). Reverse osmosis desalination: Water sources, technology, and today’s challenges. Water Research, 43, 2317–2348.  https://doi.org/10.1016/j.watres.2009.03.010.CrossRefGoogle Scholar
  11. Hatzell, K. B., Iwama, E., Ferris, A., et al. (2014). Capacitive deionization concept based on suspension electrodes without ion exchange membranes. Electrochemistry Communications, 43, 18–21.  https://doi.org/10.1016/j.elecom.2014.03.003.CrossRefGoogle Scholar
  12. Hetsroni, G., Mosyak, A., Pogrebnyak, E., & Segal, Z. (2005). Explosive boiling of water in parallel micro-channels. International Journal of Multiphase Flow, 31, 371–392.  https://doi.org/10.1016/j.ijmultiphaseflow.2005.01.003.CrossRefzbMATHGoogle Scholar
  13. Humplik, T., Lee, J., O’Hern, S. C., et al. (2011). Nanostructured materials for water desalination. Nanotechnology, 22, 292001.  https://doi.org/10.1088/0957-4484/22/29/292001.CrossRefGoogle Scholar
  14. Jeon, S., Yeo, J., Yang, S., et al. (2014). Ion storage and energy recovery of a flow-electrode capacitive deionization process. Journal of Materials Chemistry A, 2, 6378–6383.  https://doi.org/10.1039/C4TA00377B.CrossRefGoogle Scholar
  15. Kajiya, T., Schellenberger, F., Papadopoulos, P., et al. (2016). 3D imaging of water-drop condensation on hydrophobic and hydrophilic lubricant-impregnated surfaces. Scientific Reports, 6, 23687.  https://doi.org/10.1038/srep23687.CrossRefGoogle Scholar
  16. Kakac, S., & Bon, B. (2008). A review of two-phase flow dynamic instabilities in tube boiling systems. International Journal of Heat and Mass Transfer, 51, 399–433.  https://doi.org/10.1016/j.ijheatmasstransfer.2007.09.026.CrossRefzbMATHGoogle Scholar
  17. Kandlikar, S. G. (2002). Fundamental issues related to flow boiling in minichannels and microchannels. Experimental Thermal and Fluid Science, 26, 389–407.  https://doi.org/10.1016/S0894-1777(02)00150-4.CrossRefGoogle Scholar
  18. Kim, H., Yang, S., Rao, S. R., et al. (2017). Water harvesting from air with metal-organic frameworks powered by natural sunlight. Science, eaam8743.  https://doi.org/10.1126/science.aam8743.CrossRefGoogle Scholar
  19. Kuo, C.-J., & Peles, Y. (2008). Flow boiling instabilities in microchannels and means for mitigation by reentrant cavities. Journal of Heat Transfer, 130, 072402–072402.  https://doi.org/10.1115/1.2908431.CrossRefGoogle Scholar
  20. Lafuma, A., & Quéré, D. (2011). Slippery pre-suffused surfaces. EPL (Europhysics Letters), 96, 56001.  https://doi.org/10.1209/0295-5075/96/56001.CrossRefGoogle Scholar
  21. Lee, J.-B., Park, K.-K., Eum, H.-M., & Lee, C.-W. (2006). Desalination of a thermal power plant wastewater by membrane capacitive deionization. Desalination, 196, 125–134.  https://doi.org/10.1016/j.desal.2006.01.011.CrossRefGoogle Scholar
  22. Lee, J., Kim, S., Kim, C., & Yoon, J. (2014). Hybrid capacitive deionization to enhance the desalination performance of capacitive techniques. Energy & Environmental Science, 7, 3683–3689.  https://doi.org/10.1039/C4EE02378A.CrossRefGoogle Scholar
  23. Li, D., Wu, G. S., Wang, W., et al. (2012). Enhancing flow boiling heat transfer in microchannels for thermal management with monolithically-integrated silicon nanowires. Nano Letters, 12, 3385–3390.  https://doi.org/10.1021/nl300049f.CrossRefGoogle Scholar
  24. Lienhard, J. H., & Lienhard, J. H. (2003). A heat transfer textbook. Cambridge, MA: Dover Publications.zbMATHGoogle Scholar
  25. Liu, Y., Nie, C., Liu, X., et al. (2015). Review on carbon-based composite materials for capacitive deionization. RSC Advances, 5, 15205–15225.  https://doi.org/10.1039/C4RA14447C.CrossRefGoogle Scholar
  26. Mayes, A. M., Mariñas, B. J., Georgiadis, J. G., et al. (2008). Science and technology for water purification in the coming decades. Nature, 452, 301.  https://doi.org/10.1038/nature06599.CrossRefGoogle Scholar
  27. Mekonnen, M. M., & Hoekstra, A. Y. (2016). Four billion people facing severe water scarcity. Science Advances, 2, e1500323.  https://doi.org/10.1126/sciadv.1500323.CrossRefGoogle Scholar
  28. Miljkovic, N., Enright, R., Nam, Y., et al. (2013). Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces. Nano Letters, 13, 179–187.  https://doi.org/10.1021/nl303835d.CrossRefGoogle Scholar
  29. Mutha, H. K., Lu, Y., Stein, I. Y., et al. (2017). Porosimetry and packing morphology of vertically aligned carbon nanotube arrays via impedance spectroscopy. Nanotechnology, 28, 05LT01.  https://doi.org/10.1088/1361-6528/aa53aa.CrossRefGoogle Scholar
  30. Mutha, H. K., Cho, H. J., Hashempour, M., et al. (2018). Salt rejection in flow-between capacitive deionization devices. Desalination, 437, 154–163.  https://doi.org/10.1016/j.desal.2018.03.008.CrossRefGoogle Scholar
  31. Oren, Y., & Soffer, A. (1983). Water desalting by means of electrochemical parametric pumping. Journal of Applied Electrochemistry, 13, 473–487.  https://doi.org/10.1007/BF00617522.CrossRefGoogle Scholar
  32. Park, K.-C., Kim, P., Grinthal, A., et al. (2016). Condensation on slippery asymmetric bumps. Nature, 531, 78–82.  https://doi.org/10.1038/nature16956.CrossRefGoogle Scholar
  33. Porada, S., Weinstein, L., Dash, R., et al. (2012). Water desalination using capacitive deionization with microporous carbon electrodes. ACS Applied Materials & Interfaces, 4, 1194–1199.  https://doi.org/10.1021/am201683j.CrossRefGoogle Scholar
  34. Porada, S., Zhao, R., van der Wal, A., et al. (2013). Review on the science and technology of water desalination by capacitive deionization. Progress in Materials Science, 58, 1388–1442.  https://doi.org/10.1016/j.pmatsci.2013.03.005.CrossRefGoogle Scholar
  35. Porada, S., Weingarth, D., Hamelers, H. V. M., et al. (2014). Carbon flow electrodes for continuous operation of capacitive deionization and capacitive mixing energy generation. Journal of Materials Chemistry A, 2, 9313–9321.  https://doi.org/10.1039/C4TA01783H.CrossRefGoogle Scholar
  36. Preston, D. J., Mafra, D. L., Miljkovic, N., et al. (2015). Scalable graphene coatings for enhanced condensation heat transfer. Nano Letters, 15, 2902–2909.  https://doi.org/10.1021/nl504628s.CrossRefGoogle Scholar
  37. Preston, D. J., Song, Y., Lu, Z., et al. (2017). Design of lubricant infused surfaces. ACS Applied Materials & Interfaces, 9, 42383–42392.  https://doi.org/10.1021/acsami.7b14311.CrossRefGoogle Scholar
  38. Preston, D. J., Lu, Z., Song, Y., et al. (2018). Heat transfer enhancement during water and hydrocarbon condensation on lubricant infused surfaces. Scientific Reports, 8, 540.  https://doi.org/10.1038/s41598-017-18955-x.CrossRefGoogle Scholar
  39. Rose, J. W. (2002). Dropwise condensation theory and experiment: A review. Proceedings of the Institution of Mechanical Engineers Part A—Journal of Power and Energy, 216, 115–128.  https://doi.org/10.1243/09576500260049034.CrossRefGoogle Scholar
  40. Rykaczewski, K., Paxson, A. T., Staymates, M., et al. (2014). Dropwise condensation of low surface tension fluids on omniphobic surfaces. Scientific Reports, 4, 4158.  https://doi.org/10.1038/srep04158.CrossRefGoogle Scholar
  41. Schmidt, E., Schurig, W., & Sellschopp, W. (1930). Versuche über die Kondensation von Wasserdampf in Film-und Tropfenform. Technical and Mechanical Thermodynamics, 1, 53–63.  https://doi.org/10.1007/BF02641051.CrossRefGoogle Scholar
  42. Sett, S., Yan, X., Barac, G., et al. (2017). Lubricant-infused surfaces for low-surface-tension fluids: Promise versus reality. ACS Applied Materials & Interfaces, 9, 36400–36408.  https://doi.org/10.1021/acsami.7b10756.CrossRefGoogle Scholar
  43. Suss, M. E., Porada, S., Sun, X., et al. (2015). Water desalination via capacitive deionization: What is it and what can we expect from it? Energy & Environmental Science, 8, 2296–2319.  https://doi.org/10.1039/C5EE00519A.CrossRefGoogle Scholar
  44. Weisensee, P. B., Wang, Y., Hongliang, Q., et al. (2017). Condensate droplet size distribution on lubricant-infused surfaces. International Journal of Heat and Mass Transfer, 109, 187–199.  https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.119.CrossRefGoogle Scholar
  45. Wimalasiri, Y., & Zou, L. (2013). Carbon nanotube/graphene composite for enhanced capacitive deionization performance. Carbon, 59, 464–471.  https://doi.org/10.1016/j.carbon.2013.03.040.CrossRefGoogle Scholar
  46. Wiser, W. (2000). Energy resources—Occurrence, production, conversion, use (1st ed.). New York: Springer.Google Scholar
  47. Wong, T.-S., Kang, S. H., Tang, S. K. Y., et al. (2011). Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature, 477, 443–447.  https://doi.org/10.1038/nature10447.CrossRefGoogle Scholar
  48. Xiao, R., Miljkovic, N., Enright, R., & Wang, E. N. (2013). Immersion condensation on oil-infused heterogeneous surfaces for enhanced heat transfer. Scientific Reports, 3.  https://doi.org/10.1038/srep01988.
  49. Yadigaroglu, G., & Bergles, A. E. (1972). Fundamental and higher-mode density-wave oscillations in two-phase flow. Journal of Heat Transfer, 94, 189–195.  https://doi.org/10.1115/1.3449892.CrossRefGoogle Scholar
  50. Yang, F., Dai, X., Peles, Y., et al. (2014a). Flow boiling phenomena in a single annular flow regime in microchannels (I): Characterization of flow boiling heat transfer. International Journal of Heat and Mass Transfer, 68, 703–715.  https://doi.org/10.1016/j.ijheatmasstransfer.2013.09.058.CrossRefGoogle Scholar
  51. Yang, F., Dai, X., Peles, Y., et al. (2014b). Flow boiling phenomena in a single annular flow regime in microchannels (II): Reduced pressure drop and enhanced critical heat flux. International Journal of Heat and Mass Transfer, 68, 716–724.  https://doi.org/10.1016/j.ijheatmasstransfer.2013.09.060.CrossRefGoogle Scholar
  52. Zhang, T., Peles, Y., Wen, J. T., et al. (2010). Analysis and active control of pressure-drop flow instabilities in boiling microchannel systems. International Journal of Heat and Mass Transfer, 53, 2347–2360.  https://doi.org/10.1016/j.ijheatmasstransfer.2010.02.005.CrossRefzbMATHGoogle Scholar
  53. Zhu, Y., Antao, D. S., Chu, K.-H., et al. (2016a). Surface structure enhanced microchannel flow boiling. Journal of Heat Transfer, 138, 091501.  https://doi.org/10.1115/1.4033497.CrossRefGoogle Scholar
  54. Zhu, Y., Antao, D. S., Lu, Z., et al. (2016b). Prediction and characterization of dry-out heat flux in micropillar wick structures. Langmuir, 32, 1920–1927.  https://doi.org/10.1021/acs.langmuir.5b04502.CrossRefGoogle Scholar
  55. Zhu, Y., Antao, D. S., Bian, D. W., et al. (2017). Suppressing high-frequency temperature oscillations in microchannels with surface structures. Applied Physics Letters, 110, 033501.  https://doi.org/10.1063/1.4974048.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Yangying Zhu
    • 1
  • Heena K. Mutha
    • 1
  • Yajing Zhao
    • 1
  • Evelyn N. Wang
    • 1
    Email author
  1. 1.Massachusetts Technology of InstituteCambridgeUSA

Personalised recommendations