Skip to main content

Detecting Suspicious Transactions in IoT Blockchains for Smart Living Spaces

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11407))

Abstract

The idea of connecting physical things and cyber components to enable new and richer interactions is a key component in any smart space concept. One of the central challenges in these new smart spaces is the access control of data, services and things. In recent years, Distributed Ledger technology (DLT) like Blockchain Technology (BCT), emerged as the most promising solution for decentralized access management. Using capability-based access control, access to data/services/things is achieved by transferring tokens between the accounts of a distributed ledger. Managing how the access tokens are transferred is, of course, a major challenge. Within the IoT space, smart contracts are at the center of most of the proposals for DLT/BCT networks targeting access control. The main problem in using smart contracts as a means for checking if and what access token can be transferred from one account to another is their immutability and accessibility. Smart contracts and chain code are by design meant to be immutable since they represent a binding contract between parties. In addition, they need to be accessible since they are to be executed on many nodes. This allows an attacker to study them and design the attack in a manner that passes the rules of the smart contract/chain code. This paper focuses on the use of metadata as a more effective means to prevent attackers from gaining access to data/services/things in a smart living space.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. NSF: Cyber-physical systems (CPS) (2010). https://www.nsf.gov/pubs/2010/nsf10515/nsf10515.htm

  2. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of Things (IoT): a vision, architectural elements, and future directions. Future Gener. Comput. Syst. 29(7), 1645–1660 (2013)

    Article  Google Scholar 

  3. Sanchez, T., Ranasinghe, D.C., Harrison, M., McFarlane, D.: Adding sense to the Internet of Things—an architecture framework for smart object systems. Pers. Ubiquit. Comput. 16(3), 291–308 (2012)

    Article  Google Scholar 

  4. Rose, D.: Enchanted Objects: Design, Human Desire, and the Internet of Things. Simon and Schuster, New York (2014)

    Google Scholar 

  5. Panikkar, S., Nair, S., Brody, P., Pureswaran, V.: ADEPT: An IoT Practitioner Perspective (2015). http://static1.squarespace.com/static/55f73743e4b051cfcc0b02cf/55f73e5ee4b09b2bff5b2eca/55f73e72e4b09b2bff5b3267/1442266738638/IBM-ADEPT-Practictioner-Perspective-Pre-Publication-Draft-7-Jan-2015.pdf?format=original

  6. Fielding, R.: Architectural Styles and the Design of Network-based Software Architectures. Dissertation University of Irvine, vol. 7 (2000)

    Google Scholar 

  7. Robinson, L.: Richardson Maturity Model. https://martinfowler.com/articles/richardsonMaturityModel.html

  8. CRUD: “Create Read, Update and Delete”. http://en.wikipedia.org/wiki/Create,_read,_update_and_delete

  9. Samaniego, M., Deters, R.: Blockchain as a Service for IoT. In: 2016 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), pp. 433–436. IEEE (2016)

    Google Scholar 

  10. Samaniego, M., Deters, R.: Using blockchain to push software-defined IoT components onto edge hosts. In: Proceedings of the International Conference on Big Data and Advanced Wireless Technologies, p. 58. ACM (2016)

    Google Scholar 

  11. Samaniego, M., Deters, R.: Management and Internet of Things. Procedia Comput. Sci. 94, 137–143 (2016)

    Article  Google Scholar 

  12. Samaniego, M., Deters, R.: Internet of Smart Things-IoST: using Blockchain and CLIPS to make things autonomous. In: 2017 IEEE International Conference on Cognitive Computing (ICCC), pp. 9–16. IEEE (2017)

    Google Scholar 

  13. Samaniego, M., Deters, R.: Virtual resources & blockchain for configuration management in IoT. J. Ubiquit. Syst. Pervasive Netw. 9(2), 01–13 (2017)

    Google Scholar 

  14. Samaniego, M., Deters, R.: Zero-trust hierarchical management in IoT. In: 2018 IEEE International Congress on Internet of Things (ICIOT), pp. 88–95. IEEE (2018)

    Google Scholar 

  15. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3), 15 (2009)

    Article  Google Scholar 

  16. Chainalysis. https://www.chainalysis.com/

  17. A Next-Generation Smart Contract and Decentralized Application Platform. https://github.com/ethereum/wiki/wiki/White-Paper

  18. Forth. https://www.forth.com/forth/

  19. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System. https://bitcoin.org/bitcoin.pdf

  20. Debreceny, R.S., Gray, G.L.: Data mining journal entries for fraud detection: an exploratory study. Int. J. Account. Inf. Syst. 11(3), 157–181 (2010)

    Article  Google Scholar 

  21. Lane, T., Brodley, C.E.: An application of machine learning to anomaly detection. In: Proceedings of the 20th National Information Systems Security Conference, Baltimore, USA, vol. 377, pp. 366–380 (1997)

    Google Scholar 

  22. Valdes, A., Skinner, K.: Adaptive, model-based monitoring for cyber attack detection. In: Debar, H., Mé, L., Wu, S.F. (eds.) RAID 2000. LNCS, vol. 1907, pp. 80–93. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-39945-3_6

    Chapter  Google Scholar 

  23. Christidis, K., Devetsikiotis, M.: Blockchains and smart contracts for the Internet of Things. IEEE Access 4, 2292–2303 (2016)

    Article  Google Scholar 

  24. Ouaddah, A., Abou Elkalam, A., Ait Ouahman, A.: FairAccess: a new Blockchain-based access control framework for the Internet of Things. Secur. Commun. Netw. 9(18), 5943–5964 (2016)

    Article  Google Scholar 

  25. Ouaddah, A., Abou Elkalam, A., Ait Ouahman, A.: Towards a novel privacy-preserving access control model based on blockchain technology in IoT. In: Rocha, Á., Serrhini, M., Felgueiras, M.C. (eds.) Europe and MENA Cooperation Advances in Information and Communication Technologies, pp. 523–533. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-46568-5_53

    Chapter  Google Scholar 

  26. Deters, R.: How to detect and contain suspicious transactions in distributed ledgers. In: Qiu, M. (ed.) SmartBlock 2018. LNCS, vol. 11373, pp. 149–158. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05764-0_16

    Chapter  Google Scholar 

  27. Rouhani, S., Deters, R.: Performance analysis of Ethereum transactions in private blockchain. In: 2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS), pp. 70–74 (2017)

    Google Scholar 

  28. Rouhani, S., Butterworth, L., Dimmond, A.D., Humphery, D.G., Deters, R.: MediChainTM: a secure decentralized medical data asset management system. In: 2018 IEEE Conference on Internet of Things, Green Computing and Communications, Cyber, Physical and Social Computing, Smart Data, Blockchain, Computer and Information Technology, Congress on Cybermatics, pp. 1533–1538 (2018)

    Google Scholar 

  29. Rouhani, S., Pourheidari, V., Deters, R.: Physical access control management system based on permissioned blockchain. In: 2018 IEEE Conference on Internet of Things, Green Computing and Communications, Cyber, Physical and Social Computing, Smart Data, Blockchain, Computer and Information Technology, Congress on Cybermatics, pp. 1078–1083 (2018)

    Google Scholar 

  30. Pourheidari, V., Rouhani, S., Deters, R.: A case study of execution of untrusted business process on permissioned blockchain. In: 2018 IEEE Conference on Internet of Things, Green Computing and Communications, Cyber, Physical and Social Computing, Smart Data, Blockchain, Computer and Information Technology, Congress on Cybermatics, pp. 1588–1594 (2018)

    Google Scholar 

  31. Compute Engine. https://cloud.google.com/compute/

  32. Eyal, I., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable. Commun. ACM 61(7), 95–102 (2018)

    Article  Google Scholar 

  33. Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on Bitcoin’s peer-to-peer network. In: USENIX Security Symposium, pp. 129–144 (2015)

    Google Scholar 

  34. Dorri, A., Kanhere, S.S., Jurdak, R., Gauravaram, P.: Blockchain for IoT security and privacy: the case study of a smart home. In: 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), pp. 618–623. IEEE (2017)

    Google Scholar 

  35. Man-in-the-middle attacks on wallets. http://news.bitcoin.com/ledger-addresses-man-in-the-middle-attack-that-threatens-millions-of-hardware-wallets/

  36. Huebscher, M.C., McCann, J.A.: A survey of autonomic computing—degrees, models, and applications. ACM Comput. Surv. (CSUR) 40(3), 7 (2008)

    Article  Google Scholar 

  37. Nygate, Y.A.: Event correlation using rule and object based techniques. In: Sethi, A.S., Raynaud, Y., Faure-Vincent, F. (eds.) International Symposium on Integrated Network Management IV. ITIFIP, pp. 278–289. Springer, Boston, MA (1995). https://doi.org/10.1007/978-0-387-34890-2_25

    Chapter  Google Scholar 

  38. Buchmann, A., Koldehofe, B.: Complex event processing. IT-Information Technology Methoden und innovative Anwendungen der Informatik und Informationstechnik 51(5), 241–242 (2009)

    Google Scholar 

  39. Deters, R.: Case-based diagnosis of multiple faults. In: Veloso, M., Aamodt, A. (eds.) ICCBR 1995. LNCS, vol. 1010, pp. 411–420. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60598-3_37

    Chapter  Google Scholar 

  40. Maymounkov, P., Mazières, D.: Kademlia: a peer-to-peer information system based on the XOR metric. In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.) IPTPS 2002. LNCS, vol. 2429, pp. 53–65. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45748-8_5

    Chapter  MATH  Google Scholar 

  41. Mahalle, P.N., Anggorojati, B., Prasad, N.R., Prasad, R.: Identity authentication and capability-based access control (IACAC) for the Internet of Things. J. Cyber Secur. Mobility 1(4), 309–348 (2013)

    Google Scholar 

  42. https://www.samsung.com/sg/smarthome/

  43. https://cdn.mos.cms.futurecdn.net/exdTX6QGDyg8hDausRwzhJ-970-80.jpg

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Deters .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Samaniego, M., Deters, R. (2019). Detecting Suspicious Transactions in IoT Blockchains for Smart Living Spaces. In: Renault, É., Mühlethaler, P., Boumerdassi, S. (eds) Machine Learning for Networking. MLN 2018. Lecture Notes in Computer Science(), vol 11407. Springer, Cham. https://doi.org/10.1007/978-3-030-19945-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19945-6_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19944-9

  • Online ISBN: 978-3-030-19945-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics