Skip to main content

Propagation Behaviour of Acoustic Waves Excited by a Circular PZT-Actuator in Thin CFRP Plate with an Orthotropic Symmetry

  • Conference paper
  • First Online:
Advanced Materials

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 224))

Abstract

The article investigates the Lamb wave generation by the bonded piezoelectric (PZT) actuator and its travel within the orthotropic Carbon Fiber Reinforced Plastic (CFRP) plate. We consider the anisotropy of the plate elastic and damping properties, existence of the adhesive layer and dependence of the interfacial stress distribution on the surface between host plate and actuator on the anisotropy of the plate’s material, on the excited frequency, wavelength and plate’s thickness. Our investigation includes experimental determination of the elastic properties of CFRP, the wave attenuation , on the base of which the models of anisotropic material damping and the Finite Element (FE) implementation of transient wave generation , propagation and attenuation have been proposed. The proposed results can be used at the design of Structural Health Monitoring (SHM) for the composite structures with the structural anisotropy and damping , to make a reasonable choice of the frequency, type, dimensions and optimum placement of the actuators and sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Royer, T. Dieulesaint, Elastic Waves in Solids I. Free and Guided Propagation (Springer, 1999)

    Google Scholar 

  2. J.L. Rose, Ultrasonic Guided Waves in Solid Media (Cambridge University Press, 2014)

    Google Scholar 

  3. T. Kundu, P. Kapur, T.E. Matikas, P.D. Nicolau, Rev. Prog. Q. 15, 231 (1996)

    Google Scholar 

  4. S.S. Kessler, S.M. Spearing, C. Soutis, Smart Mater. Struct. 11, 269 (2002)

    Article  Google Scholar 

  5. J.L. Rose, Key Eng. Mater. 270–273, 14 (2004)

    Article  Google Scholar 

  6. M. Gresil, V. Giurgiutiu, J. Intel. Mat. Syst. Str. 26(16), 19 (2015)

    Article  Google Scholar 

  7. V. Jawali, P. Parasivamurthy, A. Nagesh, Mat. Sci. Forum. 783–786, 2296 (2014)

    Article  Google Scholar 

  8. Z. Su, I. Ye, Proc. Inst. Mech. Engrs. Part L: J. Mater. Design and Appl, 218, 95 (2004)

    Google Scholar 

  9. E. Glushkov et al., J. Acoust. Soc. Am. 132(2), 119 (2012)

    Article  Google Scholar 

  10. I. Kim, A. Chattopadhyay, J. Intel. Mat. Syst. Str. 26(8), 2515 (2015)

    Article  CAS  Google Scholar 

  11. P.-C. Ostiguy, N. Quaegebeur, M. Bilodeau, P. Masson, in Proceeding SPIE 9438, Health Monitoring of Structural and Biological Systems 2015, (Mar 23, 2015), p. 14

    Google Scholar 

  12. A. Raghavan, C.E.S. Cesnik, Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials conference, (Honolulu, Hawaii, 23–26 Apr 2007), p. 15

    Google Scholar 

  13. S.K. Parashar, J. Intel. Mat. Syst. Str. 24(13), 1572 (2013)

    Article  Google Scholar 

  14. A. Ghoshal et al., J. Intel. Mat. Syst. Str. 14, 521 (2003)

    Article  Google Scholar 

  15. K.-H. Im et al., AIP Conf. Proc. 1096, 1033 (2009)

    Article  CAS  Google Scholar 

  16. Z. Sun, B. Rocha, K.-T. Wu, N. Mrad. Int. J. Aero. Eng. 2013, 22 (2013)

    Google Scholar 

  17. V. Giurgiutiu, J. Intel. Mat. Syst. Str. 16, 291 (2005)

    Article  CAS  Google Scholar 

  18. N. Hu, Y. Liu, X. Peng, B. Yan, J. Compos. Mater. 44, 1643 (2010)

    Article  Google Scholar 

  19. D. Kim, M. Philen, J. Intel. Mat. Syst. Str. 21, 1011 (2010)

    Article  Google Scholar 

  20. T. Stepinski, M. Manka, A. Martowicz, NDT&E Int. 86, 199 (2017)

    Article  Google Scholar 

  21. H. Kim, K. Jhang, M. Shin, J. Kim, NDT&E Int. 39(4), 312 (2006)

    Article  CAS  Google Scholar 

  22. F. Yan, R.L. Royer Jr., J.L. Rose, J. Intel. Mat. Syst. Str. 20, 377 (2010)

    Article  Google Scholar 

  23. K.J. Schubert, C. Brauner, A.S. Herrmenn, Struct. Health Monit. 13(2), 158 (2014)

    Article  Google Scholar 

  24. G. Giridhara et al., in Proceeding of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (Honolulu, Hawaii, 23–26 Apr 2007), p. 12

    Google Scholar 

  25. L. Yu, Z. Tian, Struct. Health Monit. 12(5–6), 469 (2013)

    Article  Google Scholar 

  26. Z. Tian, L. Yu, C. Leckey, J. Intel. Mat. Syst. Str. 26(3), 1723 (2014)

    Google Scholar 

  27. C. Ramadas, J. Reinf. Plast. Comp. 33, 824 (2014)

    Article  CAS  Google Scholar 

  28. S. Lonne et al., Rev. Prog. Q. 23, 875 (2004)

    Google Scholar 

  29. A.M. Kamal, I. Taha, Key Eng. Mat. 425, 179 (2010)

    Article  CAS  Google Scholar 

  30. R.G. Gibson, Principles of Composite Material Mechanics (McGrave Hill Inc., 1994)

    Google Scholar 

  31. R.M. Crane, Vibration Damping Response of Composite Materials (David Taylor Research Center Report, 1991), p. 302

    Google Scholar 

  32. R.D. Adams et al., J. Compos. Mater. 3, 594 (1969)

    Article  CAS  Google Scholar 

  33. R.D. Adams, D.G.C. Bacon, J. Compos. Mater. 7, 402 (1973)

    Article  Google Scholar 

  34. Y. Gao, Y. Li, H. Zhang, X. He. Polym. Polym. Compos. 19(2, 3), 119 (2011)

    Google Scholar 

  35. M.R. Adams, M.R. Maheri, Key Eng. Mater. 50, 497 (1994)

    Google Scholar 

  36. D.A. Saravanos, C.C. Chamis. Computational Simulation of Damping in Composite Materials (NASA Tech. Report TM-102567, 1989)

    Google Scholar 

  37. O. Rabinovitch, J.R. Vinson, J. Intel. Mat. Syst. Str. 13, 689 (2002)

    Article  Google Scholar 

  38. L. Yu, G. Bottai-Santoni, V. Giurgitiutiu, Int. J. Eng. Sci. 48, 848 (2010)

    Article  CAS  Google Scholar 

  39. K.R. Mulligan et al., Struct. Health Monit. 13(1), 68 (2014)

    Article  Google Scholar 

  40. S. Kapuria, J.K. Agrahari, J. Intel. Mat. Syst. Str. 29(4), 585 (2018)

    Article  Google Scholar 

  41. L. Chinchan et al., Advanced materials-physics, mechanics and applications, in Springer Proceedings in Physics, vol. 152, eds. by S.-H. Chang, I.A. Parinov, V.Y. Topolov (Springer, Heidelberg, New York, Dordrecht, London, Springer Cham, 2014), p. 201

    Google Scholar 

  42. J.D. Achenbach, Wave Propagation in Elastic Solids (North-Holland Publishing Company, Inc., New-York)

    Google Scholar 

  43. L. Wang, F.G. Yuan, Compo. Sci. Technol. 67, 1370 (2007)

    Article  Google Scholar 

  44. V.K. Sharma, et al., in Proceeding of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (Honolulu, Hawaii, 23–26 Apr 2007), p. 12

    Google Scholar 

  45. L. Yu, Z. Tian, Struct. Health. Monit. 12(5–6), 469 (2013)

    Article  Google Scholar 

  46. D.D. Mandal, D. Wadadar, S. Banerjee, J. Vib. Control 24(12), 2464 (2018)

    Article  Google Scholar 

  47. P. Hora, O. Červená, Appl. Comp. Mech. 6, 5 (2012)

    Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the valuable financial support from the German Federal Ministry of Education and Research (BMBF) (Grant No. 13FH009IX5), Russian Foundation for the Basic Research (Grants No. 16-58-52013 and 18-38-00912) and from Russian Academy of Science (project A16-116012610052-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Shevtsova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shevtsova, M.S., Kirillova, E.V., Rozhkov, E.V., Chebanenko, V.A., Andzhikovich, I.E., Chang, SH. (2019). Propagation Behaviour of Acoustic Waves Excited by a Circular PZT-Actuator in Thin CFRP Plate with an Orthotropic Symmetry. In: Parinov, I., Chang, SH., Kim, YH. (eds) Advanced Materials. Springer Proceedings in Physics, vol 224. Springer, Cham. https://doi.org/10.1007/978-3-030-19894-7_43

Download citation

Publish with us

Policies and ethics