Skip to main content

Non-target Effects of Trichoderma on Plants and Soil Microbial Communities

Abstract

Biocontrol agents are currently considered as promising alternative to chemical fungicides because of the latter’s negative impacts on consumer health, plant health, and the environment. In the current biopesticide world, Trichoderma spp. has been globally accepted to prevent the invasion of pathogens, viz., Fusarium oxysporum, Verticillium dahliae, Pythium aphanidermatum, Rhizoctonia solani, etc. The antagonistic activity of Trichoderma spp. is attributed to several mechanisms, viz., mycoparasitism, antibiosis, induction of host systemic resistance, and production of hydrolytic enzymes. They not only have plant growth-promoting properties but also exert transient or long-term impact on the resident soil microbiome and may pose risk to beneficial non-target soil communities. Some compounds released by them in higher amount increase the sensitivity of the plant, and may pose negative impact on their growth. Additionally, Trichoderma spp. affects microbial community functions. The current chapter summarizes Trichoderma-pathogen-plant interaction, and the impact of Trichoderma spp. on plant growth, soil enzyme activities, and soil microbiome.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-19831-2_10
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-19831-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 10.1

References

  • Amaresan N, Kumar K, Venkadesaperuma G, Srivathsa NC (2018) Microbial community level physiological profiles of active mud volcano soils in Andaman and Nicobar Islands. Nat Acad Sci Lett 41:1–4

    CrossRef  Google Scholar 

  • Araújo ASF, De Souza DG, De Almeida Lopes AC (2016) T-RFLP analysis of soil bacterial structure from Cerrado within the Sete Cidades National Park, Brazil. Neotrop Biodiversity 2:163–170

    CrossRef  Google Scholar 

  • Blaya J, López-Mondéjar R, Lloret E, Pascual JA, Ros M (2013) Changes induced by Trichoderma harzianum in suppressive compost controlling Fusarium wilt. Pestic Biochem Physiol 107:112–119

    CrossRef  CAS  Google Scholar 

  • Brimner TA, Boland GJ (2003) A review of the non-target effects of fungi used to biologically control plant diseases. Agric Ecosyst Environ 100:3–16

    CrossRef  Google Scholar 

  • Chet I, Inbar J (1994) Biological control of fungal pathogens. Appl Biochem Biotechnol 48:37–43

    CrossRef  CAS  Google Scholar 

  • Cook RJ, Bruckart WL, Coulson JR, Goettel MS, Humber RA, Lumsden RD, Maddox JV, McManus ML, Moore L, Meyer SF, Quimby PC Jr, Stack JP, Vaughn JL (1996) Safety of microorganisms intended for pest and plant disease control: a framework for scientific evaluation. Biol Control 7:335–351

    CrossRef  Google Scholar 

  • Cordier C, Alabouvette C (2009) Effects of the introduction of a biocontrol strain of Trichoderma atroviride on non-target soil microorganisms. Eur J Soil Biol 7:267–274

    CrossRef  Google Scholar 

  • Epelde L, Jauregi L, Urra J, Ibarretxe L, Romo J, Goikoetxea I, Garbisu C (2018) Characterization of composted organic amendments for agricultural use. Front Sustain Food Syst 2:Article 44

    CrossRef  Google Scholar 

  • Frac M, Oszust K, Lipiec J (2012) Community level physiological profiles (CLPP), characterization and microbial activity of soil amended with dairy sewage sludge. Sensors 12:3253–3268

    CrossRef  Google Scholar 

  • Garcia DE, Lopez BR, de-Bashan LE, Hirsch AM, Maymon M, Bashan Y (2018) Functional metabolic diversity of the bacterial community in undisturbed resource island soils in the southern Sonoran Desert. Land Degrad Dev 29:1467–1477

    CrossRef  Google Scholar 

  • Gasoni L, Khan N, Yokoyama K, Chiessa GH, Kobayashi K (2008) Impact of Trichoderma harzianum biocontrol agent on functional diversity of soil microbial community in tobacco monoculture in Argentina. World J Agric Sci 4:527–532

    Google Scholar 

  • Goldman GH, Hayes C, Harman GE (1994) Molecular and cellular biology of biocontrol by Trichoderma spp. Trends Biotechnol 12:478–482

    CrossRef  CAS  Google Scholar 

  • Gupta R, Mathimaran N, Wiemken A, Boller T, Bisaria VS, Sharma S (2014) Non-target effects of bioinoculants on rhizospheric microbial communities of Cajanus cajan. Appl Soil Ecol 76:26–33

    CrossRef  Google Scholar 

  • Harman GE (2006) Overview of mechanisms and uses of Trichoderma spp. Phytopathology 96:190–194

    CrossRef  CAS  Google Scholar 

  • Hashem A, Abd_Allah EF, Alqarawi AA, Al Huqail AA, Egamberdieva D (2014) Alleviation of abiotic salt stress in Ochradenus baccatus (Del.) by Trichoderma hamatum (Bonord.) Bainier. J Plant Interact 9:857–868

    CrossRef  CAS  Google Scholar 

  • Hermosa R, Viterbo A, Chet I, Monte E (2012) Plant-beneficial effects of Trichoderma and of its genes. Microbiology 158:17–25

    CrossRef  CAS  Google Scholar 

  • Howell CR (2006) Understanding the mechanisms employed by Trichoderma virens to effect biological control of cotton diseases. Phytopathology 96:178–180

    CrossRef  Google Scholar 

  • Kleifeld O, Chet I (1992) Trichoderma harzianum interaction with plants and effect on growth response. Plant Soil 144:267–272

    CrossRef  Google Scholar 

  • Kleyer H, Tecon R, Or D (2017) Resolving species level changes in a representative soil bacterial community using microfluidic quantitative PCR. Front Microbiol 8:Article 2017

    CrossRef  Google Scholar 

  • Li S, Lü T, Zhang X, Gu G, Niu Y (2013) Effect of Trichoderma longbrachiatum T2 on functional diversity of cucumber rhizomicrobes. J Environ Biol 34:293–299

    PubMed  Google Scholar 

  • Lladó S, Baldrian P (2017) Community-level physiological profiling analyses show potential to identify the copiotrophic bacteria present in soil environments. PLoS One 12:e0171638

    CrossRef  Google Scholar 

  • Lorito M, Woo SL, Harman GE, Monte E (2010) Translational research on Trichoderma: from omics to the field. Annu Rev Phytopathol 48:395–417

    CrossRef  CAS  Google Scholar 

  • Louis BP, Maron PA, Menasseri-Aubry S, Sarr A, Lévêque J, Mathieu O, Jolivet C, Leterme P, Viaud V (2016) Microbial diversity indexes can explain soil carbon dynamics as a function of carbon source. PLoS One 11:e0161251

    CrossRef  Google Scholar 

  • Lumsden RD, Carter JP, Whipps JM, Lynch JM (1990) Comparison of biomass and viable propagule measurements in the antagonism of Trichoderma harzianum against Pythium ultimum. Soil Biol Biochem 22:187–194

    CrossRef  Google Scholar 

  • McAllister CB, Garcia-Romera I, Godeas A, Ocampo JA (1994) In vitro interactions between Trichoderma koningii, Fusarium solani and Glomus mosseae. Soil Biol Biochem 26:1369–1374

    CrossRef  Google Scholar 

  • McLean KL, Dodd SL, Minchin RF, Ohkura M, Bienkowski D, Stewart A (2014) Non-target impacts of the biocontrol agent Trichoderma atroviride on plant health and soil microbial communities in two native ecosystems in New Zealand. Australas Plant Pathol 43:33–45

    CrossRef  Google Scholar 

  • Morán-Diez E, Rubio B, Domínguez S, Hermosa R, Monte E, Nicolás C (2012) Transcriptomic response of Arabidopsis thaliana after 24 h incubation with the biocontrol fungus Trichoderma harzianum. J Plant Physiol 169:614–620

    CrossRef  Google Scholar 

  • Mukherjee M, Mukherjee PK, Horwitz BA, Zachow C, Berg G, Zeilinger S (2012) Trichoderma–plant–pathogen interactions: advances in genetics of biological control. Indian J Microbiol 52:522–529

    CrossRef  Google Scholar 

  • Naseby DC, Lynch JM (1998) Impact of wild-type and genetically modified Pseudomonas fluorescens on soil enzyme activities and microbial population structure in the rhizosphere of pea. Mol Ecol 7:617–625

    CrossRef  CAS  Google Scholar 

  • Naseby DC, Pascual JA, Lynch JM (2000) Effect of biocontrol strains of Trichoderma on plant growth, Pythium ultimum populations, soil microbial communities and soil enzyme activities. J Appl Microbiol 88:161–169

    CrossRef  CAS  Google Scholar 

  • Nieto-Jacobo MF, Steyaert JM, Salazar-Badillo FB, Nguyen DV, Rostás M, Braithwaite M, De Souza JT, Bremont JFJ, Ohkura M, Stewart A, Mendoza-Mendoza A (2017) Environmental growth conditions of Trichoderma spp. affects indole acetic acid derivatives, volatile organic compounds, and plant growth promotion. Front Plant Sci 8:Article 102

    CrossRef  Google Scholar 

  • Ondreičková K, Piliarová M, Bušo R, Hašana R, Schreiber Ľ, Gubiš J, Kraic J (2018) The structure and diversity of bacterial communities in differently managed soils studied by molecular fingerprinting methods. Sustainability 10:1095–1111

    CrossRef  Google Scholar 

  • Pacwa-Płociniczak M, Płociniczak T, Yu D, Kurola JM, Sinkkonen A, Piotrowska-Seget Z, Romantschuk M (2018) Effect of Silene vulgaris and heavy metal pollution on soil microbial diversity in long-term contaminated soil. Water Air Soil Pollut 229:1–13

    CrossRef  Google Scholar 

  • Pang G, Cai F, Li R, Zhao Z, Li R, Gu X, Shen Q, Chen W (2017) Trichoderma-enriched organic fertilizer can mitigate microbiome degeneration of monocropped soil to maintain better plant growth. Plant Soil 416:181–192

    CrossRef  CAS  Google Scholar 

  • Pascual J, Blanco S, Ramos JL, Van Dillewijn P (2018) Responses of bulk and rhizosphere soil microbial communities to thermoclimatic changes in a Mediterranean ecosystem. Soil Biol Biochem 118:130–144

    CrossRef  CAS  Google Scholar 

  • Peñuelas J, Filella I (1998) Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends Plant Sci 3:151–156

    CrossRef  Google Scholar 

  • Ros M, Raut I, Santisima-Trinidad AB, Pascual JA (2017) Relationship of microbial communities and suppressiveness of Trichoderma fortified composts for pepper seedlings infected by Phytophthora nicotianae. PLoS One 12:e0174069

    CrossRef  Google Scholar 

  • Sampson PH, Zarco-Tejada PJ, Mohammed GH, Miller JR, Noland TL (2003) Hyperspectral remote sensing of forest condition: estimating chlorophyll content in tolerant hardwoods. For Sci 49:381–391

    Google Scholar 

  • Saravanakumar K, Li Y, Yu C, Wang QQ, Wang M, Sun J, Gao JX, Chen J (2017) Effect of Trichoderma harzianum on maize rhizosphere microbiome and biocontrol of Fusarium stalk rot. Sci Rep 7:1771–1783

    CrossRef  Google Scholar 

  • Shi WL, Chen XL, Wang LX, Gong ZT, Li S, Li CL, Xie BB, Zhang W, Shi M, Li C, Zhang YZ, Song XY (2016) Cellular and molecular insight into the inhibition of primary root growth of Arabidopsis induced by peptaibols, a class of linear peptide antibiotics mainly produced by Trichoderma spp. J Exp Bot 67:2191–2205

    CrossRef  CAS  Google Scholar 

  • Shoresh M, Harman GE (2008) The molecular basis of shoot responses of maize seedlings to Trichoderma harzianum T22 inoculation of the root: a proteomic approach. Plant Physiol 147:2147–2163

    CrossRef  CAS  Google Scholar 

  • Shrivastava S, Prasad R, Varma A (2014) Anatomy of root from eyes of a microbiologist. In: Morte A, Varma A (eds) Root engineering, vol 40. Springer, Berlin, pp 3–22

    CrossRef  Google Scholar 

  • Soliman T, Yang SY, Yamazaki T, Jenke-Kodama H (2017) Profiling soil microbial communities with next-generation sequencing: the influence of DNA kit selection and technician technical expertise. Peer J 5:e4178

    CrossRef  Google Scholar 

  • Szczepaniak Z, Cyplik P, Juzwa W, Czarny J, Staninska J, Piotrowska-Cyplik A (2015) Antibacterial effect of the Trichoderma viride fungi on soil microbiome during PAH’s biodegradation. Int Biodeterior Biodegrad 104:170–177

    CrossRef  CAS  Google Scholar 

  • Trabelsi D, Mhamdi R (2013) Microbial inoculants and their impact on soil microbial communities: a review. Biomed Res Int 2013:Article ID 863240

    CrossRef  Google Scholar 

  • Umadevi P, Anandaraj M, Srivastav V, Benjamin S (2018) Trichoderma harzianum MTCC 5179 impacts the population and functional dynamics of microbial community in the rhizosphere of black pepper (Piper nigrum L.). Braz J Microbiol 49(3):463–470. https://doi.org/10.1016/j.bjm.2017.05.011

    CrossRef  CAS  PubMed  Google Scholar 

  • Vázquez MM, César S, Azcón R, Barea JM (2000) Interactions between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants. Appl Soil Ecol 15:261–272

    CrossRef  Google Scholar 

  • Verma M, Brar SK, Tyagi RD, Surampalli RY, Valero JR (2007) Antagonistic fungi, Trichoderma spp.: panoply of biological control. Biochem Eng J 37:1–20

    CrossRef  Google Scholar 

  • Wang S, Chen X, Gong H, Cai Z (2018) Response of soil microbial abundance and diversity in Sacha Inchi (Plukenetia volubilis L.) farms with different land-use histories in a tropical area of Southwestern China. Arch Agron Soil Sci 64:588–596

    CrossRef  Google Scholar 

  • Wood JL, Zhang C, Mathews ER, Tang C, Franks AE (2016) Microbial community dynamics in the rhizosphere of a cadmium hyper-accumulator. Sci Rep 6:36067

    CrossRef  CAS  Google Scholar 

  • Wu Z, Lin W, Li B, Wu L, Fang C, Zhang Z (2015) Terminal restriction fragment length polymorphism analysis of soil bacterial communities under different vegetation types in subtropical area. PLoS One 10:e0129397

    CrossRef  Google Scholar 

  • Zhang Z, Qu Y, Li S, Feng K, Wang S, Cai W, Liang Y, Li H, Xu M, Yin H, Deng Y (2017) Soil bacterial quantification approaches coupling with relative abundances reflecting the changes of taxa. Sci Rep 7:4837

    CrossRef  Google Scholar 

  • Zhu S, Wang Y, Xu X, Liu T, Wu D, Zheng X, Tang S, Dai Q (2018) Potential use of high-throughput sequencing of soil microbial communities for estimating the adverse effects of continuous cropping on ramie (Boehmeria nivea L. Gaud). PLoS One 13:e0197095

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shilpi Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Jangir, M., Sharma, S., Sharma, S. (2019). Non-target Effects of Trichoderma on Plants and Soil Microbial Communities. In: Varma, A., Tripathi, S., Prasad, R. (eds) Plant Microbe Interface. Springer, Cham. https://doi.org/10.1007/978-3-030-19831-2_10

Download citation