Investigating the Benefits of Exploiting Incremental Learners Under Active Learning Scheme

  • Stamatis KarlosEmail author
  • Vasileios G. Kanas
  • Nikos Fazakis
  • Christos Aridas
  • Sotiris Kotsiantis
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 559)


This paper examines the efficacy of incrementally updateable learners under the Active Learning concept, a well-known iterative semi-supervised scheme where the initially collected instances, usually a few, are augmented by the combined actions of both the chosen base learner and the human factor. Instead of exploiting conventional batch-mode learners and refining them at the end of each iteration, we introduce the use of incremental ones, so as to apply favorable query strategies and detect the most informative instances before they are provided to the human factor for annotating them. Our assumption about the benefits of this kind of combination into a suitable framework is verified by the achieved classification accuracy against the baseline strategy of Random Sampling and the corresponding learning behavior of the batch-mode approaches over numerous benchmark datasets, under the pool-based scenario. The measured time reveals also a faster response of the proposed framework, since each constructed classification model into the core of Active Learning concept is built partially, updating the existing information without ignoring the already processed data. Finally, all the conducted comparisons are presented along with the appropriate statistical testing processes, so as to verify our claim.


Incremental learners Active Learning scheme Stochastic Gradient Descent Query strategy Unlabeled data 



This research is implemented through the Operational Program Human Resources Development, Education and Lifelong Learning and is co-financed by the European Union (European Social Fund) and Greek national funds.


  1. 1.
    Domingos, P., Hulten, G.: Mining high-speed data streams. In: KDD, pp. 71–80 (2000)Google Scholar
  2. 2.
    Pratama, M., Anavatti, Sreenatha G., Lughofer, E.: An incremental classifier from data streams. In: Likas, A., Blekas, K., Kalles, D. (eds.) SETN 2014. LNCS (LNAI), vol. 8445, pp. 15–28. Springer, Cham (2014). Scholar
  3. 3.
    Mahmoud, M.: Semi-supervised keyword spotting in Arabic speech using self-training ensembles (2015)Google Scholar
  4. 4.
    Schwenker, F., Trentin, E.: Pattern classification and clustering: A review of partially supervised learning approaches. Pattern Recogn. Lett. 37, 4–14 (2014)CrossRefGoogle Scholar
  5. 5.
    Aggarwal, C.C., Kong, X., Gu, Q., Han, J., Yu, P.S.: Active learning: a survey. In: Data Classification: Algorithms and Applications, pp. 571–605 (2014)CrossRefGoogle Scholar
  6. 6.
    Zhang, Z., Cummins, N., Schuller, B.: Advanced data exploitation in speech analysis. IEEE Signal Process. Mag. 34, 107–129 (2017)CrossRefGoogle Scholar
  7. 7.
    Hoens, T.R., Polikar, R., Chawla, N.V.: Learning from streaming data with concept drift and imbalance: an overview. Prog. Artif. Intell. 1, 89–101 (2012)CrossRefGoogle Scholar
  8. 8.
    Dou, J., Li, J., Qin, Q., Tu, Z.: Moving object detection based on incremental learning low rank representation and spatial constraint. Neurocomputing. 168, 382–400 (2015)CrossRefGoogle Scholar
  9. 9.
    Bai, X., Ren, P., Zhang, H., Zhou, J.: An incremental structured part model for object recognition. Neurocomputing. 154, 189–199 (2015)CrossRefGoogle Scholar
  10. 10.
    Tasar, O., Tarabalka, Y., Alliez, P.: Incremental learning for semantic segmentation of large-scale remote sensing data. CoRR. abs/1810.1 (2018)Google Scholar
  11. 11.
    Ristin, M., Guillaumin, M., Gall, J., Van Gool, L.: Incremental learning of random forests for large-scale image classification. IEEE Trans. Pattern Anal. Mach. Intell. 38, 490–503 (2016)CrossRefGoogle Scholar
  12. 12.
    Shin, G., Yooun, H., Shin, D., Shin, D.: Incremental learning method for cyber intelligence, surveillance, and reconnaissance in closed military network using converged IT techniques. Soft. Comput. 22, 6835–6844 (2018)CrossRefGoogle Scholar
  13. 13.
    Dou, J., Li, J., Qin, Q., Tu, Z.: Robust visual tracking based on incremental discriminative projective non-negative matrix factorization. Neurocomputing 166, 210–228 (2015)CrossRefGoogle Scholar
  14. 14.
    Wibisono, A., Jatmiko, W., Wisesa, H.A., Hardjono, B., Mursanto, P.: Traffic big data prediction and visualization using fast incremental model trees-drift detection (FIMT-DD). Knowl. Based Syst. 93, 33–46 (2016)CrossRefGoogle Scholar
  15. 15.
    Wang, M., Wang, C.: Learning from adaptive neural dynamic surface control of strict-feedback systems. IEEE Trans. Neural Netw. Learn. Syst. 26, 1247–1259 (2015)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Zhang, H., Wu, P., Beck, A., Zhang, Z., Gao, X.: Adaptive incremental learning of image semantics with application to social robot. Neurocomputing 173, 93–101 (2016)CrossRefGoogle Scholar
  17. 17.
    Khan, S., Wollherr, D.: IBuILD: incremental bag of binary words for appearance based loop closure detection. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 5441–5447. IEEE (2015)Google Scholar
  18. 18.
    Saveriano, M., An, S., Lee, D.: Incremental kinesthetic teaching of end-effector and null-space motion primitives. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 3570–3575. IEEE (2015)Google Scholar
  19. 19.
    Thrun, S.: Toward robotic cars. Commun. ACM 53, 99 (2010)CrossRefGoogle Scholar
  20. 20.
    Shen, Y., Yun, H., Lipton, Z.C., Kronrod, Y., Anandkumar, A.: Deep active learning for named entity recognition. In: Blunsom, P., et al. (eds.) Proceedings of the 2nd Workshop on Representation Learning for NLP, Rep4NLP@ACL 2017, Vancouver, Canada, 3 August 2017, pp. 252–256. Association for Computational Linguistics (2017)Google Scholar
  21. 21.
    Sener, O., Savarese, S.: Active learning for convolutional neural networks: a core-set approach. In: International Conference on Learning Representations (2018)Google Scholar
  22. 22.
    Liu, Y., et al.: Generative adversarial active learning for unsupervised outlier detection. CoRR. abs/1809.1 (2018)Google Scholar
  23. 23.
    Fang, M., Li, Y., Cohn, T.: Learning how to active learn: a deep reinforcement learning approach. In: Palmer, M., Hwa, R., Riedel, S. (eds.) EMNLP 2017, Copenhagen, Denmark, pp. 595–605. Association for Computational Linguistics (2017)Google Scholar
  24. 24.
    Contardo, G., Denoyer, L., Artières, T.: A meta-learning approach to one-step active-learning. In: Brazdil, P., Vanschoren, J., Hutter, F., and Hoos, H. (eds.) AutoML@PKDD/ECML, pp. 28–40. (2017)Google Scholar
  25. 25.
    Krempl, G., Kottke, D., Lemaire, V.: Optimised probabilistic active learning (OPAL): for fast, non-myopic, cost-sensitive active classification. Mach. Learn. 100, 449–476 (2015)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Zhang, T.: Solving large scale linear prediction problems using stochastic gradient descent Algorithms. In: ICML, pp. 919–926 (2004)Google Scholar
  27. 27.
    Settles, B.: Active Learning. Morgan & Claypool Publishers, San Rafael (2012)zbMATHGoogle Scholar
  28. 28.
    Sharma, M., Bilgic, M.: Evidence-based uncertainty sampling for active learning. Data Min. Knowl. Discov. 31, 164–202 (2017)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Tsuruoka, Y., Tsujii, J., Ananiadou, S.: Stochastic gradient descent training for L1-regularized log-linear models with cumulative penalty. In: ACL/IJCNLP, pp. 477–485 (2009)Google Scholar
  30. 30.
    Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B. 67, 301–320 (2005)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Yang, Y.-Y., Lee, S.-C., Chung, Y.-A., Wu, T.-E., Chen, S.-A., Lin, H.-T.: libact: Pool-based active learning in Python (2017)Google Scholar
  32. 32.
    Buitinck, L., et al.: API design for machine learning software: experiences from the scikit-learn project. In: CoRR abs/1309.0238 (2013)Google Scholar
  33. 33.
    Harrell, F.E.: Regression Modeling Strategies. Springer, New York (2015). Scholar
  34. 34.
    Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer, Heidelberg (2009). Scholar
  35. 35.
    Xiang, Z., Xiao, Z., Wang, D., Georges, H.M.: Incremental semi-supervised kernel construction with self-organizing incremental neural network and application in intrusion detection. J. Intell. Fuzzy Syst. 31, 815–823 (2016)CrossRefGoogle Scholar
  36. 36.
    Lin, Y., Jiang, X., Li, Y., Zhang, J., Cai, G.: Semi-supervised collective extraction of opinion target and opinion word from online reviews based on active labeling. J. Intell. Fuzzy Syst. 33, 3949–3958 (2017)CrossRefGoogle Scholar
  37. 37.
    Akusok, A., Eirola, E., Miche, Y., Gritsenko, A.: Advanced Query Strategies for Active Learning with Extreme Learning Machine. In: ESANN, pp. 105–110 (2017)Google Scholar
  38. 38.
    Wang, Y., Singh, A.: Noise-adaptive margin-based active learning for multi-dimensional data. CoRR. abs/1406.5 (2014)Google Scholar
  39. 39.
    Hsu, W.-N., Lin, H.-T.: Active learning by learning. In: Bonet, B., Koenig, S. (eds.) Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, 25–30 January 2015, Austin, Texas, USA, pp. 2659–2665. AAAI Press (2015)Google Scholar
  40. 40.
    Zhao, J., Liu, N., Malov, A.: Safe semi-supervised classification algorithm combined with active learning sampling strategy. J. Intell. Fuzzy Syst. 35, 4001–4010 (2018)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of PatrasPatrasGreece
  2. 2.Department of Electrical and Computer EngineeringUniversity of PatrasPatrasGreece

Personalised recommendations