Skip to main content

The Optimisation of LDPC Decoding Algorithm Parameters for 5G Access Network Empirical Models

  • 454 Accesses

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 986)

Abstract

This article is focused on the optimisation of LDPC codes in order to achieve high efficiency in encoding and decoding messages that also respect Transmission Channel Properties: this issue is related to the frequency band of the assumed transmission, and on models of - faults that affect individual symbols - or groups of symbols, according to their Transmission Environment Properties.

Keywords

  • Shannon inequality
  • Regular and irregular LDPC codes
  • Tanner Graph
  • MAP
  • LLR
  • Differential Evolution
  • Approximation of tanhx
  • FPGA + ARM
  • SoC
  • SystemC

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gallager, R.G.: Low density parity check codes. IRE Trans. Inf. Theory IT-8, 21–28 (1962)

    CrossRef  MathSciNet  Google Scholar 

  2. Vlcek, K., Vorac, J., Mitrych, J.: Iterative decoder with very sparse matrices solution, In: Proceedings of the 7th IEEE Workshop on Design and Diagnostics of Electronic Circuits and Systems, Stará Lesná, Slovakia, pp. 203–206, 18–21 April 2004. ISBN 80-969117-9-1

    Google Scholar 

  3. Noor-A-Rahim, M., Nguyen, K.D., Lechner, G.: Finite length analysis of LDPC codes, arXiv:1309.7102v1, 27 September 2013

  4. Noor-A-Rahim, M., Nguyen, K.D., Lechner, G.: Anytime characteristics of spatially coupled code. Accepted for Presentation at 51st Annual Allerton Conference on Communication, Control, and Computing, Allerton, Illinois, October 2013

    Google Scholar 

  5. Xilinx: Breakthrough UltraScale + Device Performance with SmartConnect Technology, WP478 (v1.0), pp. 1–11 (2016)

    Google Scholar 

  6. Knot, T., Vlček, K.: LDPC binary vectors coding enhances transmissions and memories reliability. In: Proceedings of the 6th Computer Science On-line Conference 2017 (CSOC 2017), vol. 2, pp. 434–443. https://doi.org/10.1007/978-3-319-57264-2, ISBN 978-3-319-57263-5

    Google Scholar 

  7. Olejník, R., Matyáš, J., Slobodian, P., Vlček, K.: Microwave antenna with integrated organic vapor sensor function. Czech Republic. Patent, 304850. Granted, 22 October 2014

    Google Scholar 

  8. Karami, A.R., Attari, M.A.: Novel LDPC Decoder via MLP Neural Networks. arXiv:1411.3425 [cs.IT]

  9. European Cooperative in the Field of Science and Technical Research EURO-COST 231. Urban Transmission Loss Models for Mobile Radio in the 900 MHz and 1,800 MHz Bands. The Hague, the Netherlands, September 1991

    Google Scholar 

  10. ITU-R Recommendation M.1225: Guidelines for evaluation of radio transmission technologies for IMT 2000, February 1997. http://www.itu.int/rec/REC-R-M.1225/en. Accessed 20 April 2015

  11. Johnson, S.J.: Iterative Error Correction. Cambridge University Press (2010). ISBN 978-0-521-87148-8

    Google Scholar 

  12. Grabner, M., Pechac, P., Valtr, P.: Analysis of propagation of electromagnetic waves in atmospheric hydrometeors on low-elevation paths. Radioengineering 27(1), 29–33 (2018). https://doi.org/10.13164/re.2018.0029. ISSN 1210-2512

    CrossRef  Google Scholar 

  13. Shinkarenko, K.V., Vlček, K.: Design of erasure codes for digital multimedia transmitting. In: Proceedings of 2008 IEEE DDECS, pp. 30–33. IEEE, 16–18 April 2008 (2008). ISDN 978-1-4244-2276-0/08/

    Google Scholar 

  14. Kim, H.: Wireless Communications Systems Design, pp. 46–50. Wiley (2015). ISBN 9781118610152

    Google Scholar 

  15. Shokrollahi, A.: LDPC codes: an introduction. Digital Fountain, Inc., Technical report, p. 2 (2003)

    Google Scholar 

  16. Richardson, T.J., Shokrollahi, M.A., Urbanke, R.L.: Design of capacity-approaching irregular low-density parity-check codes. IEEE Trans. Inf. Theory 47(2), 619–637 (2011)

    CrossRef  MathSciNet  Google Scholar 

  17. Du, J., Zhou, L., Zhang, Z., Yang, L., Yuan, J.: Regular and irregular LDPC code design for bandwidth efficient BICM schemes. IEEE (2017). 978-1-5090-5019-2/17

    Google Scholar 

  18. Caire, G., Taricco, G., Biglieri, E.: Bit-interleaved coded modulation. IEEE Trans. Inf. Theory 44(3), 927–946 (1998)

    CrossRef  MathSciNet  Google Scholar 

  19. Zehavi, E.: 8-PSK trellis code for a Rayleigh cannel. IEEE Trans. Commun. 40(5), 873–884 (1992)

    CrossRef  Google Scholar 

  20. ten Brink, S., Kramer, G., Ashikhmin, A.: Design of low-density parity-check codes for modulation and detection. IEEE Trans. Commun. 52(4), 670–678 (2004)

    CrossRef  Google Scholar 

  21. Vlček, K.: SystemC – tools and framework for design System on Chip with mixed signals, 11 March 2014. (in Czech). http://www.utb.cz/file/44257_1_1/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomas Knot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Knot, T., Vlcek, K. (2019). The Optimisation of LDPC Decoding Algorithm Parameters for 5G Access Network Empirical Models. In: Silhavy, R. (eds) Cybernetics and Automation Control Theory Methods in Intelligent Algorithms. CSOC 2019. Advances in Intelligent Systems and Computing, vol 986. Springer, Cham. https://doi.org/10.1007/978-3-030-19813-8_16

Download citation