WIMS: Innovative Pedagogy with 21 Year Old Interactive Exercise Software

  • Magdalena KobylanskiEmail author
Part of the Mathematics Education in the Digital Era book series (MEDE, volume 13)


WIMS (Web Interactive Multipurpose Server) is a collaborative, open source e-learning platform hosting online, interactive, random, self-correcting exercises in many different fields such as mathematics, chemistry, physics, biology, French, and English, among others. It is widely used in France, mainly in mathematics at secondary school level and up to the first years of study at university. Using it effectively can bring advantages to both students and teachers. This chapter is devoted to the presentation of WIMS and its affordances, both from the point of view of learner and teacher. Two surveys conducted with learners and teachers using WIMS showed that this technology has an interesting pedagogical potential and can be used both in and out of class. Perspectives in terms of ongoing developments toward the improvement of the system are outlined.


Self-correcting exercises E-learning platform Grading Learning analytics Motivation Pedagogical alignment Metacognitive skills 



This chapter would never have been written without the kind and skilled support of Jana Trgalová et Gilles Aldon. The author expresses to them her warmest thanks.


  1. Ambrose, S. A., Bridges, M. W., DiPietro, M., Lovett, M. C., & Norman, M. K. (2010). How learning works: 7 Research-based principles for smart teaching. Jossey-Bass.Google Scholar
  2. Berland, C. (2017) E-learning platform WIMS for bachelor first year courses on electric circuit. Presented at the European Association for Education in Electrical and Information Engineering (EAEEIE) Annual Conference, June 2017, Grenoble (France).Google Scholar
  3. Bloom, B. S. (1956). Taxonomy of educational objectives, handbook 1: The cognitive domain. New York: David McKay.Google Scholar
  4. Brophy, J. (2004). Motivating students to learn (2nd ed.). New Jersey: Lawrence Erlbaum Associates Publishers.Google Scholar
  5. Cazes, C., Gueudet, G., Hersant, M., & Vandebrouck, F. (2006). Using e-exercise bases in mathematics: Case studies at university. International Journal of Computers for Mathematical Learning, 11, 327–350.CrossRefGoogle Scholar
  6. Chappaz, G. (1992). Peut-on éduquer la motivation? Cahiers pédagogiques, 300.Google Scholar
  7. Chevallard, Y. (1998). Analyse des pratiques enseignantes et didactique des mathématiques: l’approche anthropologique. In Actes de l’université d’été Analyse des pratiques enseignantes et didactique des mathématiques (pp. 91–120). IREM de Clermont-Ferrand.Google Scholar
  8. Cordier, F., & Cordier, J. (1991). L’application du théorème de Thalès. Un exemple du rôle des représentations typiques comme biais cognitifs. Recherche en Didactique des Mathématiques, 11(1), 45–64.Google Scholar
  9. Cosnefroy, L. (2011). L’apprentissage autorégulé: Entre cognition et motivation. Grenoble: Presses universitaires de Grenoble.Google Scholar
  10. Duval, R. (1993). Registres de représentations sémiotiques et fonctionnement cognitif de la pensée. Annales de Didactique et de Sciences Cognitives, 5, 37–65.Google Scholar
  11. Getha-Taylor, H., Hummert, R., Nalbandian, J., & Silvia, C. (2013). Competency model design and assessment: Findings and future directions. Journal of Public Affairs Education, 19(1), 141–171.CrossRefGoogle Scholar
  12. Giner, E., & Kobylanski, M. (2017). Retour sur l’expérimentation WIMS. Research Report. UPEM.Google Scholar
  13. Grubb, W. N., & Cox, R. D. (2005). Pedagogical alignment and curricular consistency: The challenges for developmental education. New Directions for Community Colleges, 129, 93–103.CrossRefGoogle Scholar
  14. Hersant, M., & Vandebrouck, F. (2006). Bases d’exercices de mathématiques en ligne et phénomènes d’enseignement-apprentissage. Repères-IREM, 62, 71–84.Google Scholar
  15. Jacquemin, L. (2017). WIMS: une ressource comme les autres mais en mieux. Enquête sociologique auprès d’utilisateurs enseignants de WIMS sur leurs usages et pratiques effectives. Research Report. UPEM.Google Scholar
  16. Jacquemin, L. (2018). Enquête sociologique auprès des étudiants utilisateurs de WIMS à Marne-la-Vallée. Research Report. UPEM.Google Scholar
  17. Karpicke, J. D. (2017). Retrieval-based learning: A decade of progress. In J. H. Byrne (ed.), Learning and Memory: A comprehensive reference (2nd Ed., pp. 487–514). Elsevier Ltd.Google Scholar
  18. Léon, A. (1972). La motivation chez les élèves de l’enseignement technique. Psychologie scolaire, 9, 78.Google Scholar
  19. Pilet, J. (2012). Parcours d’enseignement différencié appuyés sur un diagnostic en algèbre élémentaire à la fin de la scolarité obligatoire: Modélisation, implémentation dans une plateforme en ligne et évaluation. Thèse de doctorat, Université Paris-Diderot, Paris 7.Google Scholar
  20. Ruthven, K., & Hennessy, S. (2002). A practitioner model of the use of computer-based tools and resources to support mathematics teaching and learning. Educational Studies in Mathematics, 49(2–3), 47–86.CrossRefGoogle Scholar
  21. Ryan, R. W., & Deci, E. L. (2000). Intrinsic and extrinsic motivations: Classic definitions and new directions. Contemporary Educational Psychology, 25, 54–67.CrossRefGoogle Scholar
  22. Viau, R. (2009). La motivation en contexte scolaire. Paris: De Boeck.Google Scholar
  23. Viau, R. (2011). La motivation condition essentielle de réussite (Edition révisée). In J. C. Ruano-Borbalan (Ed.), Éduquer et Former (pp. 113–121). Paris: Éditions Sciences Humaines.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Université Paris-Est Marne-la-Vallée (UPEM) LAMA-UMR8050, Université Paris-Est IDEAChamps-sur-MarneFrance

Personalised recommendations