Advertisement

Students’ Self-Awareness of Their Mathematical Thinking: Can Self-Assessment Be Supported Through CAS-Integrated Learning Apps on Smartphones?

  • Bärbel Barzel
  • Lynda Ball
  • Marcel KlingerEmail author
Chapter
Part of the Mathematics Education in the Digital Era book series (MEDE, volume 13)

Summary

A range of digital technology to support mathematics learning is freely available on the internet, particularly apps offering immediate access to different representations and calculations. In this article, we analyze some learning apps (available for smartphones) with an integrated computer algebra system (CAS) that offer support when learning how to solve equations. In the context of solving quadratic equations, use of apps in an informal way to learn how to solve not only touches on learning issues in the field of algebra, but also aspects of students’ self-regulation and the use of technology. These different aspects are discussed in the theoretical background and are used to guide our methodological approach to analyze different CAS-integrated learning apps.

References

  1. Aldon, G., Cusi, A., Morselli, F., Panero, M., & Sabena, C. (2017). Formative assessment and technology: Reflections developed through the collaboration between teachers and researchers. In G. Aldon, F. Hitt, L. Bazzini, & U. Gellert (Eds.), Mathematics and technology: A C.I.E.A.E.M. sourcebook (pp. 551–578). Cham: Springer.Google Scholar
  2. Arcavi, A. (2005). Developing and using symbol sense in mathematics. For the Learning of Mathematics, 25(2), 42–47.Google Scholar
  3. Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Englewood Cliffs: Prentice-Hall.Google Scholar
  4. Barzel, B. (2007). New technology? New ways of teaching—No time left for that! International Journal for Technology in Mathematics Education, 14(2), 77–86.Google Scholar
  5. Barzel, B., & Holzäpfel, L. (2017). Gleichungen verstehen. mathematik lehren, 169, 2–7.Google Scholar
  6. Beal, C., Arroyo, I., Cohen, P., & Woolf, B. (2010). Evaluation of animal watch: An intelligent tutoring system for arithmetic and fractions. Journal of Interactive Online Learning, 9(1), 64–77.Google Scholar
  7. Bell, B., & Cowie, B. (2001). The characteristics of formative assessment in science education. Science Education, 85(5), 536–553.CrossRefGoogle Scholar
  8. Block, J. (2015). Flexible algebraic action on quadratic equations. In K. Krainer & N. Vondrová (Eds.), Proceedings of the Ninth Congress of the European Society for Research in Mathematics Education (pp. 391–397). Prague: ERME.Google Scholar
  9. Brown, A. L., Ellery, S., & Campione, J. (1998). Creating zones of proximal development electronically. In J. Greeno & S. Goldman (Eds.), Thinking practices: A symposium in mathematics and science education (pp. 341–368). Hillsdale: Lawrence Erlbaum.Google Scholar
  10. Buchberger, B. (1990). Should students learn integration rules? ACM SIGSAM Bulletin, 24(1), 10–17.CrossRefGoogle Scholar
  11. de Lima, R. N., & Tall, D. (2006). The concept of equations: What have students met before? In J. Novotná, H. Moraová, M. Krátká, & N. Stehlíková (Eds.). Proceedings of the 30th Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 233–240). Prague: PME.Google Scholar
  12. Dehaene, S. (1997). The number sense: How the mind creates mathematics. Oxford: Oxford University Press.Google Scholar
  13. Ehret, C. (2017). Mathematisches Schreiben: Modellierung einer fachbezogenen Prozesskompetenz. Wiesbaden: Springer Spektrum.CrossRefGoogle Scholar
  14. Feierabend, S., Plankenhorn, T., & Rathgeb, T. (2017). JIM-Studie 2017: Jugend, Information, (Multi-) Media – Basisuntersuchung zum Medienumgang 12- bis 19-Jähriger. Stuttgart: Medienpädagogischer Forschungsverbund Südwest.Google Scholar
  15. Graesser, A. C., McNamara, D. S., & VanLehn, K. (2005). Scaffolding deep comprehension strategies through Point & Query, AutoTutor and iSTART. Educational Psychologist, 40(4), 225–234.CrossRefGoogle Scholar
  16. Heid, M. K. (1988). Resequencing skills and concepts in applied calculus using the computer as a tool. Journal for Research in Mathematics Education, 19, 3–25.CrossRefGoogle Scholar
  17. Heugl, H., Klinger, W., & Lechner, J. (1996). Mathematikunterricht mit Computeralgebra-Systemen: Ein didaktisches Leherbuch mit Erfahrungen aus dem österreichischen DERIVE-Projekt. Bonn: Addison-Wesley.Google Scholar
  18. Hillmayr, D., Reinhold, F., Ziernwald, L., & Reiss, K. (2017). Digitale Medien im mathematisch-naturwissenschaftlichen Unterricht der Sekundarstufe: Einsatzmöglichkeiten, Umsetzung und Wirksamkeit. Münster: Waxmann.Google Scholar
  19. Klinger, M. (2019). “Besser als der Lehrer!” – Potenziale CAS-basierter Smartphone-Apps aus didaktischer und Lernenden-Perspektive. In G. Pinkernell, & F. Schacht (Eds.), Digitalisierung fachbezogen gestalten: Herbsttagung vom 28. bis 29. September 2018 an der Universität Duisburg-Essen (pp. 69–85). Hildesheim: Franzbecker.Google Scholar
  20. Klinger, M., & Schüler-Meyer, A. (2019). Wenn die App rechnet: Smartphone-basierte Computer-Algebra-Apps brauchen eine geeignete Aufgabenkultur. mathematik lehren, 215.Google Scholar
  21. Klinger, M., Thurm, D., Itsios, C., & Peters-Dasdemir, J. (2018). Technology-related beliefs and the mathematics classroom: Development of a measurement instrument for pre-service and in-service teachers. In B. Rott, G. Törner, J. Peters-Dasdemir, A. Möller, & Safrudiannur (Eds.), Views and beliefs in mathematics education: The role of beliefs in the classroom (pp. 233–244). Cham: Springer.Google Scholar
  22. Küchemann, D. (1981). Algebra. In K. Hart (Ed.), Children’s understanding of mathematics: 11-16 (pp. 102–119). London: Murray.Google Scholar
  23. Leuders, T., & Prediger, S. (2016). Flexibel differenzieren und fokussiert fördern im Mathematikunterricht. Berlin: Cornelsen.Google Scholar
  24. Ma, W., Adesope, O., Nesbit, J., & Liu, Q. (2014). Intelligent tutoring systems and learning outcomes: A meta-analysis. Journal of Educational Psychology, 106(4), 901–918.CrossRefGoogle Scholar
  25. Nattland, A., & Kerres, M. (2009). Computerbasierte Methoden im Unterricht. In K.-H. Arnold, U. Sandfuchs, & J. Wiechmann (Eds.), Handbuch Unterricht (pp. 317–324). Bad Heilbrunn: Klinkhardt.Google Scholar
  26. Nydegger, A. (2018). Algebraisieren von Sachsituationen: Wechselwirkungen zwischen relationaler und operationaler Denk- und Sichtweise. Wiesbaden: Springer Spektrum.CrossRefGoogle Scholar
  27. Pane, J. F., Griffin, B. A., McCaffrey, D. F., & Karam, R. (2014). Effectiveness of cognitive tutor algebra I at scale. Educational Evaluation and Policy Analysis, 36(2), 127–144.CrossRefGoogle Scholar
  28. Pierce, R., & Stacey, K. (2002). Algebraic insight: The algebra needed to use computer algebra systems. Mathematics Teacher, 95(8), 622–627.Google Scholar
  29. Pierce, R., & Stacey, K. (2004). Monitoring progress in algebra in a CAS active context: Symbol sense, algebraic insight and algebraic expectation. International Journal for Technology in Mathematics Education, 11(1), 3–12.Google Scholar
  30. Ritter, S., Anderson, J. R., Koedinger, K., & Corbett, A. (2007). Cognitive Tutor: Applied research in mathematics education. Psychonomic Bulletin & Review, 14(2), 249–255.CrossRefGoogle Scholar
  31. Rittle-Johnson, B., Schneider, M., & Star, J. R. (2015). Not a one-way street: Bidirectional relations between procedural and conceptual knowledge of mathematics. Educational Psychology Review, 27(4), 587–597.CrossRefGoogle Scholar
  32. Schoenfeld, A. (2014). What makes for powerful classrooms, and how can we support teachers in creating them? A story of research and practice, productively intertwined. Educational Researcher, 43(8), 404–412.CrossRefGoogle Scholar
  33. Stacey, K. (2011). Eine Reise über die Jahrgänge: Vom Rechenausdruck zum Lösen von Gleichungen. mathematik lehren, 169, 6–12.Google Scholar
  34. Stacey, K., Steinle, V., Gvozdenko, E., & Price, B. (2013). SMART online formative assessments for teaching mathematics. Curriculum & Leadership Journal, 11(20).Google Scholar
  35. Thurm, D., Klinger, M., Barzel, B., & Rögler, P. (2017). Überzeugungen zum Technologieeinsatz im Mathematikunterricht: Entwicklung eines Messinstruments für Lehramtsstudierende und Lehrkräfte. mathematica didactica, 40(1), 19–35.Google Scholar
  36. VanLehn, K., Lynch, C., Schulze, K., Shapiro, J. A., Shelby, R., Taylor, L., et al. (2005). The Andes physics tutoring system: Five years of evaluations. In G. McCalla, C. K. Looi, B. Bredeweg, & J. Breuker (Eds.), Artificial intelligence in education (pp. 678–685). Amsterdam: IOS Press.Google Scholar
  37. Vygotsky, L. S. (1978). Mind in society: The development of higher psychology processes. Cambridge: Harvard University Press.Google Scholar
  38. Walsh, M., Moss, C. M., Johnson, B. G., Holder, D. A., & Madura, J. D. (2002). Quantitative impact of a cognitive modeling intelligent tutoring system on student performance in balancing chemical equations. Chemical Educator, 7, 379–383.CrossRefGoogle Scholar
  39. Webel, C., & Otten, S. (2016). Teaching in a world with Photomath. Mathematics Teacher, 109(5), 368–373.CrossRefGoogle Scholar
  40. Werquin, P. (2007). Moving mountains: Will qualifications systems promote lifelong learning? European Journal of Education, 42(4), 459–484.CrossRefGoogle Scholar
  41. Wiliam, D., & Thompson, M. (2008). Integrating assessment with learning: What will it take to make it work? In C. A. Dwyer (Ed.), The future of assessment: Shaping teaching and learning (pp. 53–82). Mahwah: Lawrence Erlbaum.Google Scholar
  42. Winter, H. (1984). Begriff und Bedeutung des Übens im Mathematikunterricht. mathematik lehren, 2, 4–16.Google Scholar
  43. Woolf, B. P. (2009). Building intelligent interactive tutors: Student-centered strategies for revolutionizing e-learning. Burlington: Morgan Kaufman.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of Duisburg-EssenEssenGermany
  2. 2.MGSE, University of MelbourneMelbourneAustralia

Personalised recommendations