Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 489 Accesses

Abstract

In this chapter, we envisage a quantum memory cell composed of a superconducting flux qubit galvanically coupled (Bourassa et al. Phys Rev A 80:032109, 2009 [1]) to a microwave resonator in the circuit QED framework. With the proposed cell, we would like to scale-up the entire structure into a three dimensional setup (see Chap. 7).

Creativity is intelligence having fun.

—Albert Einstein

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    HHL is named after the three researchers: Aram Harrow, Avinatan Hassidim, and Seth Lloyd.

References

  1. Bourassa J, Gambetta JM, Abdumalikov A, Astafiev O, Nakamura Y, Blais A (2009) Ultrastrong coupling regime of cavity QED with phase-biased flux qubits. Phys Rev A 80:032109

    Article  ADS  Google Scholar 

  2. Wenner J, Yin Y, Chen Y, Barends R, Chiaro B, Jeffrey E, Kelly J, Megrant A, Mutus JY, Neill C, et al (2014) Catching time-reversed microwave coherent state photons with 99.4% absorption efficiency. Phys Rev Lett 112(21):21050

    Google Scholar 

  3. Houck AA, Schuster DI, Gambetta JM, Schreier JA, Johnson BR, Chow JM, Frunzio L, Majer J, Devoret MH, Girvin SM et al (2007) Generating single microwave photons in a circuit. Nature 449(7160):328

    Article  ADS  Google Scholar 

  4. Yin Y, Chen Y, Sank D, O’Malley PJJ, White TC, Barends R, Kelly J, Lucero E, Mariantoni M, Megrant A et al (2013) Catch and release of microwave photon states. Phys Rev Lett 110(10):107001

    Article  ADS  Google Scholar 

  5. Srinivasan SJ, Sundaresan NM, Sadri D, Liu Y, Gambetta JM, Yu T, Girvin SM, Houck AA (2014) Time-reversal symmetrization of spontaneous emission for quantum state transfer. Phys Rev A 89(3):033857

    Article  ADS  Google Scholar 

  6. Chow JM, Gambetta JM, Magesan E, Abraham DW, Cross AW, Johnson BR, Masluk NA, Ryan CA, Smolin JA, Srinivasan SJ et al (2014) Implementing a strand of a scalable fault-tolerant quantum computing fabric. Nat Comm 5:4015

    Article  ADS  Google Scholar 

  7. Chow JM, Gambetta JM, Rothwell MB, Rozen JR (2018) Modular array of vertically integrated superconducting qubit devices for scalable quantum computing. US Patent App. 15/871,443

    Google Scholar 

  8. Barends R, Kelly J, Megrant A, Veitia A, Sank D, Jeffrey E, White TC, Mutus J, Fowler AG, Campbell B et al (2014) Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature 508(7497):500

    Article  ADS  Google Scholar 

  9. Jeffrey E, Sank D, Mutus JY, White TC, Kelly J, Barends R, Chen Y, Chen Z, Chiaro B, Dunsworth A et al (2014) Fast accurate state measurement with superconducting qubits. Phys Rev Lett 112(19):190504

    Article  ADS  Google Scholar 

  10. Giovannetti V, Lloyd S, Maccone L (2008a) Quantum random access memory. Phys Rev Lett 100:160501

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Giovannetti V, Lloyd S, Maccone L (2008b) Architectures for a quantum random access memory. Phys Rev A 78:052310

    Article  ADS  MATH  Google Scholar 

  12. Cirac JI, Ekert AK, Huelga SF, Macchiavello C (1999) Distributed quantum computation over noisy channels. Phys Rev A 59:4249

    Article  ADS  MathSciNet  Google Scholar 

  13. Kimble HJ (2008) The quantum internet. Nature 453:1023

    Article  ADS  Google Scholar 

  14. Ekert AK (1991) Quantum cryptography based on Bell’s theorem. Phys Rev Lett 67:661

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Bennett CH (1995) Quantum information and computation. Phys Today 48:24

    Article  Google Scholar 

  16. Bennett CH, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters WK (1895) Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys Rev Lett 70(13):1993

    MathSciNet  MATH  Google Scholar 

  17. Bennett CH, Brassard G, Popescu S, Schumacher B, Smolin JA, Wootters WK (1996) Purification of noisy entanglement and faithful teleportation via noisy channels. Phys Rev Lett 76(5):722

    Article  ADS  Google Scholar 

  18. Deutsch D, Ekert A, Jozsa R, Macchiavello C, Popescu S, Sanpera A (1996) Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys Rev Lett 77(13):2818

    Article  ADS  Google Scholar 

  19. Nigg SE, Girvin SM (2013) Stabilizer quantum error correction toolbox for superconducting qubits. Phys Rev Lett 110:243604

    Article  ADS  Google Scholar 

  20. Harrow AW, Hassidim A, Lloyd S (2009) Quantum algorithm for linear systems of equations. Phys Rev Lett 103(15):150502

    Article  ADS  MathSciNet  Google Scholar 

  21. Childs AM (2009) Quantum algorithms: equation solving by simulation. Nat Phys 5(12):861

    Article  Google Scholar 

  22. Romero G, Ballester D, Wang YM, Scarani V, Solano E (2012) Ultrafast quantum gates in circuit QED. Phys Rev Lett 108:120501

    Article  ADS  Google Scholar 

  23. Makhlin Y, Scöhn G, Shnirman A (1999) Josephson-junction qubits with controlled couplings. Nature 398:305

    Article  ADS  Google Scholar 

  24. Grajcar M, Liu Y-X, Nori F, Zagoskin AM (2006) Switchable resonant coupling of flux qubits. Phys Rev B 74:172505

    Article  ADS  Google Scholar 

  25. Braak D (2011) Integrability of the Rabi model. Phys Rev Lett 107:100401

    Article  ADS  Google Scholar 

  26. Nataf P, Ciuti C (2011) Protected quantum computation with multiple resonators in ultrastrong coupling circuit QED. Phys Rev Lett 107:190402

    Article  ADS  Google Scholar 

  27. Hofheinz M, Weig EM, Ansmann M, Bialczak RC, Lucero E, Neeley M, O’connell AD, Wang H, Martinis JM, Cleland AN (2008) Generation of Fock states in a superconducting quantum circuit. Nature 454(7202):310

    Article  ADS  Google Scholar 

  28. Peng ZH, De Graaf SE, Tsai JS, Astafiev OV (2016) Tuneable on-demand single-photon source in the microwave range. Nat Comm 7:12588

    Article  ADS  Google Scholar 

  29. Sathyamoorthy SR, Bengtsson A, Bens S, Simoen M, Delsing P, Johansson G (2016) Simple, robust, and on-demand generation of single and correlated photons. Phys Rev A 93(6):063823

    Article  ADS  Google Scholar 

  30. Berry MV (1984) Quantal phase factors accompanying adiabatic changes. Pros R Soc Lond A 392:45

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Lang C, Eichler C, Steffen L, Fink JM, Woolley MJ, Blais A, Wallraff A (2013) Correlations, indistinguishability and entanglement in hong-ou-mandel experiments at microwave frequencies. Nat Phys 9(6):345

    Article  Google Scholar 

  32. Beaudoin F, Gambetta JM, Blais A (2011) Dissipation and ultrastrong coupling in circuit QED. Phys Rev A 84:043832

    Article  ADS  Google Scholar 

  33. Breuer H-P, Petruccione F (2002) The theory of open quantum systems. Oxford University Press on Demand

    Google Scholar 

  34. Ridolfo A, Leib M, Savasta S, Hartmann MJ (2012) Photon blockade in the ultrastrong coupling regime. Phys Rev Lett 109:193602

    Article  ADS  Google Scholar 

  35. Felicetti S, Sanz M, Lamata L, Romero G, Johansson G, Delsing P, Solano E (2014) Dynamical Casimir effect entangles artificial atoms. Phys Rev Lett 113(9):093602

    Article  ADS  Google Scholar 

  36. Wilson CM, Johansson G, Pourkabirian A, Simoen M, Johansson JR, Duty T, Nori F, Delsing P (2011) Observation of the dynamical Casimir effect in a superconducting circuit. Nature 479(7373):376

    Article  ADS  Google Scholar 

  37. Kyaw TH, Felicetti S, Romero G, Solano E, Kwek L-C (2015) Scalable quantum memory in the ultrastrong coupling regime. Sci Rep 5:8621

    Google Scholar 

  38. Kyaw TH, Felicetti S, Romero G, Solano E, Kwek L-C (2014) \(\mathbb{Z}_2\) quantum memory implemented on circuit quantum electrodynamics. Proc SPIE 9225:92250B

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thi Ha Kyaw .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kyaw, T.H. (2019). Quantum Memory in the USC Regime. In: Towards a Scalable Quantum Computing Platform in the Ultrastrong Coupling Regime. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-19658-5_5

Download citation

Publish with us

Policies and ethics