Advertisement

Multivariate Approach to Alcohol Detection in Drivers by Sensors and Artificial Vision

  • Paul D. Rosero-MontalvoEmail author
  • Vivian F. López-Batista
  • Diego H. Peluffo-Ordóñez
  • Vanessa C. Erazo-Chamorro
  • Ricardo P. Arciniega-Rocha
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11487)

Abstract

This work presents a system for detecting excess alcohol in drivers to reduce road traffic accidents. To do so, criteria such as alcohol concentration the environment, a facial temperature of the driver and width of the pupil are considered. To measure the corresponding variables, the data acquisition procedure uses sensors and artificial vision. Subsequently, data analysis is performed into stages for prototype selection and supervised classification algorithms. Accordingly, the acquired data can be stored and processed in a system with low-computational resources. As a remarkable result, the amount of training samples is significantly reduced, while an admissible classification performance is achieved - reaching then suitable settings regarding the given device’s conditions.

Keywords

Alcohol detection Drunk detection Prototype selection Sensors Supervised classification 

Notes

Acknowledgment

This work is supported by the “Smart Data Analysis Systems - SDAS” group (http://sdas-group.com).

References

  1. 1.
    Assailly, J.-P.: Young people drunk-driving: process and outcome evaluation of preventive actions. In: von Holst, H., Nygren, Å., Andersson, Å.E. (eds.) Transportation, Traffic Safety and Health - Human Behavior, pp. 297–326. Springer, Heidelberg (2000).  https://doi.org/10.1007/978-3-642-57266-1_18CrossRefGoogle Scholar
  2. 2.
    Al-Youif, S., Ali, M.A.M., Mohammed, M.N.: Alcohol detection for car locking system. In: 2018 IEEE Symposium on Computer Applications and Industrial Electronics (ISCAIE), pp. 230–233. IEEE, April 2018. https://ieeexplore.ieee.org/document/8405475/
  3. 3.
    Paredes-Doig, A.L., del Rosario Sun-Kou, M., Comina, G.: Alcohols detection based on Pd-doped SnO\(<\)inf\(>\)2\(<\)/inf\(>\) sensors. In: 2014 IEEE 9th IberoAmerican Congress on Sensors, pp. 1–3. IEEE, October 2014. http://ieeexplore.ieee.org/document/6995514/
  4. 4.
    Drunk driving detection based on classification of multivariate time series. J. Saf. Res. 54, 61.e29–64 (2015)Google Scholar
  5. 5.
    Nair, V., Charniya, N.: Drunk driving and drowsiness detection alert system. In: Pandian, D., Fernando, X., Baig, Z., Shi, F. (eds.) ISMAC 2018. LNCVB, vol. 30, pp. 1191–1207. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-00665-5_113CrossRefGoogle Scholar
  6. 6.
    Klajner, F., Sobell, L.C., Sobell, M.B.: Prevention of drunk driving. In: Nirenberg, T.D. (ed.) Prevention of Alcohol Abuse, pp. 441–468. Springer, Boston (1984).  https://doi.org/10.1007/978-1-4613-2657-1_21CrossRefGoogle Scholar
  7. 7.
    Koukiou, G., Anastassopoulos, V.: Local difference patterns for drunk person identification. Multimed. Tools Appl. 77(8), 9293–9305 (2018).  https://doi.org/10.1007/s11042-017-4892-6CrossRefGoogle Scholar
  8. 8.
    Wu, Y., Xia, Y., Xie, P., Ji, X.: The design of an automotive anti-drunk driving system to guarantee the uniqueness of driver. In: 2009 International Conference on Information Engineering and Computer Science, pp. 1–4. IEEE, December 2009. http://ieeexplore.ieee.org/document/5364823/
  9. 9.
    Rosero-Montalvo, P., et al.: Neighborhood criterion analysis for prototype selection applied in WSN data. In: 2017 International Conference on Information Systems and Computer Science (INCISCOS), pp. 128–132. IEEE, November 2017. http://ieeexplore.ieee.org/document/8328096/
  10. 10.
    Rosero-Montalvo, P., Peluffo-Ordonez, D.H., Batista, V.F.L., Serrano, J., Rosero, E.: Intelligent system for identification of wheelchair user’s posture using machine learning techniques. IEEE Sens. J. 1 (2018). https://ieeexplore.ieee.org/document/8565996/
  11. 11.
    Rosero-Montalvo, P.D., et al.: Intelligence in embedded systems: overview and applications. In: Arai, K., Bhatia, R., Kapoor, S. (eds.) FTC 2018. AISC, vol. 880, pp. 874–883. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-02686-8_65CrossRefGoogle Scholar
  12. 12.
    Rosero-Montalvo, P., et al.: Prototype reduction algorithms comparison in nearest neighbor classification for sensor data: Empirical study. In: 2017 IEEE Second Ecuador Technical Chapters Meeting (ETCM), pp. 1–5. IEEE, October 2017. http://ieeexplore.ieee.org/document/8247530/

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Paul D. Rosero-Montalvo
    • 1
    • 2
    Email author
  • Vivian F. López-Batista
    • 2
  • Diego H. Peluffo-Ordóñez
    • 3
    • 4
  • Vanessa C. Erazo-Chamorro
    • 5
  • Ricardo P. Arciniega-Rocha
    • 5
  1. 1.Universidad Técnica del NorteIbarraEcuador
  2. 2.Universidad de SalamancaSalamancaSpain
  3. 3.Universidad de NariñoPastoColombia
  4. 4.SDAS Research GroupYachay Tech UniversityUrcuquíEcuador
  5. 5.Instituto Tecnológico Superior 17 de JulioIbarraEcuador

Personalised recommendations