Advertisement

KUKA LWR Robot Cartesian Stiffness Control Based on Kinematic Redundancy

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 980)

Abstract

This paper is dealing with one important topic for physical human-robot interaction, and that is achieving and/or optimizing of an arbitrary Cartesian stiffness of robot’s end-effector (EE). The focus is given on redundant compliant robots with serial elastic actuators with fixed joint stiffness, but can reconfigure without changing the EE position. The work presented in this paper is an approach where the robot redundancy is exploited to achieve the desired or at least some optimal Cartesian stiffness of robots EE. Robot tasks can be divided into primary and secondary tasks. In our case, the primary task is to track the Cartesian position reference and the secondary task is to optimize EE Cartesian stiffness behavior while keeping the desired EE position. This means that the EE position is a constraint in the robot Cartesian stiffness optimization. The algorithm for the Cartesian stiffness optimization has been initially tested using the simulation, and then evaluated on the 7-DOFs KUKA light weight robot.

Keywords

Cartesian stiffness control Robot redundancy Null space Physical human-robot interaction 

References

  1. 1.
    Pedrocchi, N., Vicentini, F., Malosio, M., Tosatti, L.M.: Safe human-robot cooperation in an industrial environment. Int. J. Adv. Robot. Syst. 10(1), 27 (2013)CrossRefGoogle Scholar
  2. 2.
    Hogan, N.: Impedance Control: An approach to manipulation: Part II—Implementation. J. Dyn. Syst. Measur. Control 107(1), 8–16 (1985)zbMATHCrossRefGoogle Scholar
  3. 3.
    Haddadin, S., Albu-Schäffer, A., Hirzinger, G.: Safe physical human-robot interaction: measurements, analysis and new insights. In: Springer Tracts in Advanced Robotics, vol. 66, pp. 395–407 (2010)Google Scholar
  4. 4.
    Pratt, G.A., Williamson, M.M.: Series elastic actuators. In: Proceedings of 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems 95. Human Robot Interaction and Cooperative Robots, vol. 1, pp. 399–406 (1995)Google Scholar
  5. 5.
    Robinson, D.W., Pratt, J.E., Paluska, D.J., Pratt, G.A.: Series elastic actuator development for a biomimetic walking robot. In: Proceedings of 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 561–568 (1999)Google Scholar
  6. 6.
    Van Ham, R., Vanderborght, B., Van Damme, M., Verrelst, B., Lefeber, D.: MACCEPA, the mechanically adjustable compliance and controllable equilibrium position actuator: design and implementation in a biped robot. Robot. Auton. Syst. 55(10), 761–768 (2007)CrossRefGoogle Scholar
  7. 7.
    De, A., Tasch, U.: A two-DOF manipulator with adjustable compliance capabilities and comparison with the human finger. J. Robot. Syst. 13(1), 25–34 (1996)CrossRefGoogle Scholar
  8. 8.
    Migliore, S.A., Brown, E.A., DeWeerth, S.P.: Biologically inspired joint stiffness control. In: Proceedings - IEEE International Conference on Robotics and Automation 2005, pp. 4508–4513 (2005)Google Scholar
  9. 9.
    Vanderborght, B., Albu-Schaeffer, A., Bicchi, A., Burdet, E., Caldwell, D.G., Carloni, R., Catalano, M., Eiberger, O., Friedl, W., Ganesh, G., Garabini, M., Grebenstein, M., Grioli, G., Haddadin, S., Hoppner, H., Jafari, A., Laffranchi, M., Lefeber, D., Wolf, S.: Variable impedance actuators: a review. Robot. Auton. Syst. 61(12), 1601–1614 (2013)CrossRefGoogle Scholar
  10. 10.
    Grioli, G., Wolf, S., Garabini, M., Catalano, M., Burdet, E., Caldwell, D., Carloni, R., Friedl, W., Grebenstein, M., Laffranchi, M., Lefeber, D., Stramigioli, S., Tsagarakis, N., VanDamme, M., Vanderborght, B., Albu-Schaeffer, A., Bicchi, A.: Variable stiffness actuators: the user’s point of view. Int. J. Robot. Res. 34(6), 727–743 (2015)CrossRefGoogle Scholar
  11. 11.
    Van Ham, R., Sugar, T.G., Vanderborght, B., Hollander, K.W., Lefeber, D.: Compliant actuator designs. Robot. Autom. Mag. 16(3), 81–94 (2009)CrossRefGoogle Scholar
  12. 12.
    De Santis, A., Siciliano, B., De Luca, A., Bicchi, A.: An atlas of physical human–robot interaction. Mech. Mach. Theory 43(3), 253–270 (2008)zbMATHCrossRefGoogle Scholar
  13. 13.
    Edsinger, A., Kemp, C.C.: Human-robot interaction for cooperative manipulation: handing objects to one another. In: Proceedings - IEEE International Workshop on Robot and Human Interactive Communication, pp. 1167–1172 (2007)Google Scholar
  14. 14.
    Yu, H., Huang, S., Chen, G., Pan, Y., Guo, Z.: Human-robot interaction control of rehabilitation robots with series elastic actuators. IEEE Trans. Robot. 31(5), 1089–1100 (2015)CrossRefGoogle Scholar
  15. 15.
    Albu-Schaffer, A., Fischer, M., Schreiber, G., Schoeppe, F., Hirzinger, G.: Soft robotics: what cartesian stiffness can obtain with passively compliant, uncoupled joints? In: Proceedings of International Conference on Intelligent Robots and Systems, 2004 (IROS 2004), vol. 4, pp. 3295–3301 (2004)Google Scholar
  16. 16.
    Petit, F., Albu-Schäffer, A.: Cartesian impedance control for a variable stiffness robot arm. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4180–4186 (2011)Google Scholar
  17. 17.
    Wu, H.-C.: The Karush–Kuhn–Tucker optimality conditions in an optimization problem with interval-valued objective function. Eur. J. Oper. Res. 176(1), 46–59 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Momoh, J.A., El-Hawary, M.E., Adapa, R.: A review of selected optimal power flow literature to 1993. I. Nonlinear and quadratic programming approaches. IEEE Trans. Power Syst. 14(1), 96–104 (1999)CrossRefGoogle Scholar
  19. 19.
    Momoh, J.A., El-Hawary, M.E., Adapa, R.: A review of selected optimal power flow literature to 1993. II. Newton, linear programming and interior point methods. IEEE Trans. Power Syst. 14(1), 105–111 (1999)CrossRefGoogle Scholar
  20. 20.
    Chiaverini, S., Oriolo, G., Maciejewski, A.A.: Redundant robots. In: Springer Handbook of Robotics, 2nd edn., pp. 221–242. Springer, Cham (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.School of Electrical EngineeringUniversity of BelgradeBelgradeSerbia
  2. 2.Jožef Stefan InstituteLjubljanaSlovenia

Personalised recommendations