Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 976))

Included in the following conference series:

Abstract

We extend the K-means and LBG algorithms to the framework of the Grassmann manifold to perform subspace quantization. For K-means it is possible to move a subspace in the direction of another using Grassmannian geodesics. For LBG the centroid computation is now done using a flag mean algorithm for averaging points on the Grassmannian. The resulting unsupervised algorithms are applied to the MNIST digit data set and the AVIRIS Indian Pines hyperspectral data set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Absil PA, Mahony R, Sepulchre R (2007) Optimization algorithms on matrix manifolds. Princeton University Press, Princeton

    Google Scholar 

  2. Adams H, Chepushtanova S, Emerson T, Hanson E, Kirby M, Motta F, Neville R, Peterson C, Shipman P, Ziegelmeier L (2017) Persistent images: a stable vector representation of persistent homology. J Mach Learn 18(1):218–252

    MATH  Google Scholar 

  3. Baumgardner MF, Biehl LL, Landgrebe D.A (2015) 220 band AVIRIS hyperspectral image data set: June 12, 1992 Indian Pine Test Site 3, September 2015

    Google Scholar 

  4. Beveridge JR, Draper BA, Chang JM, Kirby M, Kley H, Peterson C (2009) Principal angles separate subject illumination spaces in YDB and CMU-PIE. IEEE Trans Pattern Anal Mach Intell 31(2):351–363

    Article  Google Scholar 

  5. Björck A, Golub GH (1973) Numerical methods for computing angles between linear subspaces. Math Comput 27(123):579–594

    Article  MathSciNet  Google Scholar 

  6. Chang JM, Kirby M, Kley H, Peterson C, Beveridge J, Draper B (2007) Recognition of digital images of the human face at ultra low resolution via illumination spaces. Lecture Notes in Computer Science, vol 4844. Springer, pp 733–743

    Google Scholar 

  7. Chepushtanova S, Kirby M (2017) Sparse Grassmannian embeddings for hyperspectral data representation and classification. IEEE Geosci Remote Sens Lett 14(3):434–438

    Article  Google Scholar 

  8. Chepushtanova S, Kirby M, Peterson C, Ziegelmeier L (2015) An application of persistent homology on Grassmann manifolds for the detection of signals in hyperspectral imagery. In: 2015 IEEE international geoscience and remote sensing symposium (IGARSS). IEEE, pp 449–452

    Google Scholar 

  9. Chepushtanova S, Kirby M, Peterson C, Ziegelmeier L (2016) Persistent homology on Grassmann manifolds for analysis of hyperspectral movies. In: International workshop on computational topology in image context. Lecture Notes in Computer Science, vol. 9667. Springer, pp 228–239

    Google Scholar 

  10. Cireşan DC, Meier U, Gambardella LM, Schmidhuber J (2010) Deep, big, simple neural nets for handwritten digit recognition. Neural Comput 22(12):3207–3220

    Article  Google Scholar 

  11. Draper B, Kirby M, Marks J, Marrinan T, Peterson C (2014) A flag representation for finite collections of subspaces of mixed dimensions. Linear Algebra Appl 451:15–32

    Article  MathSciNet  Google Scholar 

  12. Edelman A, Arias TA, Smith ST (1998) The geometry of algorithms with orthogonality constraints. SIAM J Matrix Anal Appl 20(2):303–353

    Article  MathSciNet  Google Scholar 

  13. Gallivan KA, Srivastava A, Liu X, Van Dooren P (2005) Efficient algorithms for inferences on Grassmann manifolds. In: 2003 IEEE workshop on statistical signal processing. IEEE, pp 15–318

    Google Scholar 

  14. Gruber P, Theis FJ (2006) Grassmann clustering. In: 2006 14th European signal processing conference. IEEE, pp 1–5

    Google Scholar 

  15. Kirby M, Peterson, C (2017) Visualizing data sets on the Grassmannian using self-organizing mappings. In: 2017 12th International workshop on self-organizing maps and learning vector quantization, clustering and data visualization (WSOM). IEEE, pp 1–6

    Google Scholar 

  16. Kohonen T (1984) Self-organization and associative memory. Springer, Berlin

    MATH  Google Scholar 

  17. Linde Y, Buzo A, Gray R (1980) An algorithm for vector quantizer design. IEEE Trans Commun 28(1):84–95

    Article  Google Scholar 

  18. MacQueen J, et al (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, vol 1, Oakland, CA, USA, pp 281–297

    Google Scholar 

  19. Marrinan T, Beveridge JR, Draper B, Kirby M, Peterson C (2015) Flag manifolds for the characterization of geometric structure in large data sets. In: Numerical mathematics and advanced applications-ENUMATH 2013. Springer, pp 457–465

    Google Scholar 

  20. Marrinan T, Draper B, Beveridge JR, Kirby M, Peterson C (2014) Finding the subspace mean or median to fit your need. In: 2014 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 1082–1089

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shannon Stiverson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stiverson, S., Kirby, M., Peterson, C. (2020). Subspace Quantization on the Grassmannian. In: Vellido, A., Gibert, K., Angulo, C., Martín Guerrero, J. (eds) Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization. WSOM 2019. Advances in Intelligent Systems and Computing, vol 976. Springer, Cham. https://doi.org/10.1007/978-3-030-19642-4_25

Download citation

Publish with us

Policies and ethics