Skip to main content

Deep Learning Prediction of Gait Based on Inertial Measurements

  • Conference paper
  • First Online:
Understanding the Brain Function and Emotions (IWINAC 2019)

Abstract

We report the application of recurrent deep learning networks, namely long term short memories (LSTM) for the modeling of gait synchronization of legs using a basic configuration of off-the-shelf inertial measurement units (IMU) providing six acceleration and rotation parameters. The proposed system copes with noisy and missing data due to high sampling rate, before applying the training of LSTM. We report accurate testing results on one experimental subject. This model can be transferred to robotised prostheses and assistive robotics devices in order to achieve quick stabilization and robust transfer of control algorithms to new users.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735ā€“1780 (1997)

    ArticleĀ  Google ScholarĀ 

  2. Cheng, G., Peddinti, V., Povey, D., Manohar, V., Khudanpur, S., Yan, Y.: An exploration of dropout with LSTMs. In: Proceedings of Interspeech 2017 (2017)

    Google ScholarĀ 

  3. Gal, Y., Ghahramani, Z.: A theoretically grounded application of dropout in recurrent neural networks. In: Advances in Neural Information Processing Systems, pp. 1019ā€“1027 (2016)

    Google ScholarĀ 

  4. Ignatov, A.: Real-time human activity recognition from accelerometer data using convolutional neural networks. Appl. Soft Comput. 62, 915ā€“922 (2018)

    ArticleĀ  Google ScholarĀ 

  5. Kok, M., Hol, J. D., Sch ƶon, T.B.: Using inertial sensors for position and orientation estimation. arXiv preprint arXiv:1704.06053 (2017)

  6. Ikehara, T., et al.: Development of closed-fitting-type walking assistance device for legs and evaluation of muscle activity. In: 2011 IEEE International Conference on Rehabilitation Robotics (ICORR), pp. 1ā€“7. IEEE, June 2011

    Google ScholarĀ 

  7. Chen, Y.P., Yang, J.Y., Liou, S.N., Lee, G.Y., Wang, J.S.: Online classifier construction algorithm for human activity detection using a tri-axial accelerometer. Appl. Math. Comput. 205(2), 849ā€“860 (2008)

    MathSciNetĀ  Google ScholarĀ 

  8. Dollar, A.M., Herr, H.: Lower extremity exoskeletons and active orthoses: challenges and state-of-the-art. IEEE Trans. Rob. 24(1), 144ā€“158 (2008)

    ArticleĀ  Google ScholarĀ 

  9. Yang, J.Y., Wang, J.S., Chen, Y.P.: Using acceleration measurements for activity recognition: an effective learning algorithm for constructing neural classifiers. Pattern Recogn. Lett. 29(16), 2213ā€“2220 (2008)

    ArticleĀ  Google ScholarĀ 

  10. Godfrey, A., Del Din, S., Barry, G., Mathers, J.C., Rochester, L.: Instrumenting gait with an accelerometer: a system and algorithm examination. Med. Eng. Phys. 37(4), 400ā€“407 (2015)

    ArticleĀ  Google ScholarĀ 

  11. Mannini, A., Sabatini, A.M.: Machine learning methods for classifying human physical activity from on-body accelerometers. Sensors 10(2), 1154ā€“1175 (2010)

    ArticleĀ  Google ScholarĀ 

  12. Wang, J., Chen, R., Sun, X., She, M.F., Wu, Y.: Recognizing human daily activities from accelerometer signal. Proc. Eng. 15, 1780ā€“1786 (2011)

    ArticleĀ  Google ScholarĀ 

  13. Erdas, C.B., Atasoy, I., Acici, K., Ogul, H.: Integrating features for accelerometer-based activity recognition. Proc. Comput. Sci. 98, 522ā€“527 (2016)

    ArticleĀ  Google ScholarĀ 

  14. Garcia-Ceja, E., Brena, R.: Long-term activity recognition from accelerometer data. Proc. Technol. 7, 248ā€“256 (2013)

    ArticleĀ  Google ScholarĀ 

  15. Zhang, M., Sawchuk, A.A.: A feature selection-based framework for human activity recognition using wearable multimodal sensors. In: Proceedings of the 6th International Conference on Body Area Networks, pp. 92ā€“98. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering) (2011)

    Google ScholarĀ 

  16. Bayat, A., Pomplun, M., Tran, D.A.: A study on human activity recognition using accelerometer data from smartphones. Proc. Comput. Sci. 34, 450ā€“457 (2014)

    ArticleĀ  Google ScholarĀ 

  17. Lee, K., Kwan, M.P.: Physical activity classification in free-living conditions using smartphone accelerometer data and exploration of predicted results. Comput. Environ. Urban Syst. 6, 124ā€“131 (2018)

    ArticleĀ  Google ScholarĀ 

  18. Wen, J., Wang, Z.: Sensor-based adaptive activity recognition with dynamically available sensors. Neurocomputing 218, 307ā€“317 (2016)

    ArticleĀ  Google ScholarĀ 

Download references

Acknowledgements

This work has been partially supported by FEDER funds through MINECO project TIN2017-85827-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel GraƱa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Romero-Hernandez, P., de Lope Asiain, J., GraƱa, M. (2019). Deep Learning Prediction of Gait Based on Inertial Measurements. In: FerrĆ”ndez Vicente, J., Ɓlvarez-SĆ”nchez, J., de la Paz LĆ³pez, F., Toledo Moreo, J., Adeli, H. (eds) Understanding the Brain Function and Emotions. IWINAC 2019. Lecture Notes in Computer Science(), vol 11486. Springer, Cham. https://doi.org/10.1007/978-3-030-19591-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19591-5_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19590-8

  • Online ISBN: 978-3-030-19591-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics