Skip to main content

Neurolight Alpha: Interfacing Computational Neural Models for Stimulus Modulation in Cortical Visual Neuroprostheses

  • Conference paper
  • First Online:
Understanding the Brain Function and Emotions (IWINAC 2019)

Abstract

Visual neuroprostheses that provide electrical stimulation along several sites of the human visual system constitute a potential tool for vision restoring for the blind. In the context of a NIH approved human clinical trials project (CORTIVIS), we now face the challenge of developing not only computationally powerful, but also flexible tools that allow us to generate useful knowledge in an efficient way. In this work, we address the development and implementation of computational models of different types of visual neurons and design a tool -Neurolight alpha- that allows interfacing these models with a visual neural prosthesis in order to create more naturalistic electrical stimulation patterns. We implement the complete pipeline, from obtaining a video stream to developing and deploying predictive models of retinal ganglion cell’s encoding of visual inputs into the control of a cortical microstimulation device which will send electrical train pulses through an Utah Array to the neural tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wolpaw, J.R., et al.: Brain-computer interface technology: a review of the first international meeting (2000)

    Google Scholar 

  2. Davis, T.S., et al.: Restoring motor control and sensory feedback in people with upper extremity amputations using arrays of 96 microelectrodes implanted in the median and ulnar nerves. J. Neural Eng. 13(3), 36001 (2016)

    Article  Google Scholar 

  3. Nuyujukian, P., et al.: Cortical control of a tablet computer by people with paralysis. PLoS ONE 13(11), e0204566 (2018)

    Article  Google Scholar 

  4. Fattahi, P., Yang, G., Kim, G., Abidian, M.R.: A review of organic and inorganic biomaterials for neural interfaces. Adv. Mater. 26(12), 1846–85 (2014)

    Article  Google Scholar 

  5. House, W.F.: Cochlear implants. Ann. Otol. Rhinol. Laryngol. 85(Suppl. 3), 3 (1976)

    Article  Google Scholar 

  6. Weiland, J.D., Liu, W., Humayun, M.S.: Retinal prosthesis. Annu. Rev. Biomed. Eng. 7(1), 361–401 (2005)

    Article  Google Scholar 

  7. Mayberg, H.S., et al.: Deep brain stimulation for treatment-resistant depression. Neuron 45(5), 651–660 (2005)

    Article  Google Scholar 

  8. Sengupta, A., et al.: Red-shifted channelrhodopsin stimulation restores light responses in blind mice, macaque retina, and human retina. EMBO Mol. Med. 8(11), 1248–1264 (2016)

    Article  Google Scholar 

  9. Vassanelli, S., Mahmud, M.: Trends and challenges in neuroengineering: toward intelligent neuroprostheses through brain inspired systems; communication. Front. Neurosci. 10, 438 (2016)

    Article  Google Scholar 

  10. da Cruz, L., et al.: Five-year safety and performance results from the argus II retinal prosthesis system clinical trial. Ophthalmology 123(10), 2248–2254 (2016)

    Article  Google Scholar 

  11. Hornig, R., et al.: Pixium vision: first clinical results and innovative developments. In: Gabel, V. (ed.) Artificial Vision, pp. 99–113. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-41876-6_8

    Chapter  Google Scholar 

  12. Fernandez, E.: Development of visual neuroprostheses: trends and challenges. Bioelectron. Med. 4(1), 12 (2018)

    Article  Google Scholar 

  13. Normann, R.A., Greger, B.A., House, P., Romero, S.F., Pelayo, F., Fernandez, E.: Toward the development of a cortically based visual neuroprosthesis. J. Neural Eng. 6(3), 35001 (2009)

    Article  Google Scholar 

  14. Dobelle, W.H.: Artificial vision for the blind by connecting a television camera to the visual cortex. ASAIO J. 46(1), 3–9 (2000)

    Article  Google Scholar 

  15. Troyk, P., et al.: A model for intracortical visual prosthesis research. Artif. Organs 27(11), 1005–1015 (2003)

    Article  Google Scholar 

  16. Lowery, A.J.: Introducing the Monash vision group’s cortical prosthesis. In: IEEE International Conference on Image Processing 2013, pp. 1536–1539 (2013)

    Google Scholar 

  17. Development of a Cortical Visual Neuroprosthesis for the Blind (CORTIVIS). ClinicalTrials.gov. Identifier: NCT02983370

  18. Early Feasibility Study of the Orion Visual Cortical Prosthesis System. ClinicalTrials.gov. Identifier: NCT03344848

  19. Shannon, R.V.: A model of threshold for pulsatile electrical stimulation of cochlear implants. Hear. Res. 40(3), 197–204 (1989). https://doi.org/10.1016/0378-5955(89)90160-3

    Article  Google Scholar 

  20. Golden, J.R., et al.: Simulation of visual perception and learning with a retinal prosthesis. J. Neural Eng. 16, 025003 (2019)

    Article  Google Scholar 

  21. Jepson, L.H., Hottowy, P., Weiner, G.A., Dabrowski, W., Litke, A.M., Chichilnisky, E.J.: High-fidelity reproduction of spatiotemporal visual signals for retinal prosthesis. Neuron 83(1), 87–92 (2014)

    Article  Google Scholar 

  22. Shah, N.P., Madugula, S., Chichilnisky, E.J., Shlens, J., Singer, Y.: Learning a neural response metric for retinal prosthesis (2018)

    Google Scholar 

  23. Beyeler, M., Boynton, G., Fine, I., Rokem, A.: pulse2percept: A Python-based simulation framework for bionic vision. In: Proceedings of the 16th Python in Science Conference, pp. 81–88 (2017)

    Google Scholar 

  24. Lozano, A., Soto-Sánchez, C., Garrigós, J., Martínez, J.J., Ferrández, J.M., Fernández, E.: A 3D convolutional neural network to model retinal ganglion cell’s responses to light patterns in mice. Int. J. Neural Syst. 28(10), 1850043 (2018)

    Article  Google Scholar 

  25. Crespo-Cano, R., Martínez-Álvarez, A., Díaz-Tahoces, A., Cuenca-Asensi, S., Ferrández, J.M., Fernández, E.: On the automatic tuning of a retina model by using a multi-objective optimization. In: Artificial Computation in Biology and Medicine, Elche, Spain, pp. 108–118 (2015)

    Google Scholar 

  26. Mcintosh, L., Maheswaranathan, N., Nayebi, A., Ganguli, S., Baccus, S.: Deep learning models of the retinal response to natural scenes. In: Advances in Neural Information Processing Systems, Barcelona, Spain, vol. 29, pp. 1369–1377 (2016)

    Google Scholar 

  27. Yan, Q., et al.: Revealing fine structures of the retinal receptive field by deep learning networks (2018). (Lateral geniculate nucleus, V1, V4...). In our work, we focus on the first stage of visual processing: the retina

    Google Scholar 

  28. Bradski, G.: The openCV library. Dr. Dobb’s J. Softw. Tools 25, 120–125 (2000)

    Google Scholar 

  29. Jones, E., Oliphant, T.E., Peterson, P., et al.: SciPy: open source scientific tools for Python (2001)

    Google Scholar 

  30. Travis E, Oliphant. A Guide to NumPy. Trelgol Publishing, USA (2006)

    Google Scholar 

  31. Maynard, E.M., Nordhausen, C.T., Normann, R.A.: The utah intracortical electrode array: a recording structure for potential brain-computer interfaces. Electroencephalogr. Clin. Neurophysiol. 102(3), 228–239 (1997). https://doi.org/10.1016/s0013-4694(96)95176-0

    Article  Google Scholar 

  32. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous distributed systems. In: Computer Science - Distributed, Parallel, and Cluster Computing, Computer Science - Learning (2016)

    Google Scholar 

  33. Chollet, F.: Keras (2015). https://github.com/fchollet/keras

  34. Intel’s Neural Compute Stick. https://movidius.github.io/ncsdk/ncs.html

  35. Deng, J., et al.: ImageNet: a large-scale hierarchical image database. In: CVPR (2009)

    Google Scholar 

  36. Baccus, S.A., Meister, M.: Fast and slow contrast adaptation in retinal circuitry. Neuron 36(5), 909–919 (2002)

    Article  Google Scholar 

  37. Kingma, D.P., Ba, J.L.: ADAM: a method for stochastic optimization

    Google Scholar 

  38. Dobelle, W.H., Mladejovsky, M.G.: Phosphenes produced by electrical stimulation of human occipital cortex, and their application to the development of a prosthesis for the blind. J. Physiol. 243(2), 553–576 (1974)

    Article  Google Scholar 

  39. Schmidt, E.M., Bak, M.J., Hambrecht, F.T., Kufta, C.V., O’Rourke, D.K., Vallabhanath, P.: Feasibility of a visual prosthesis for the blind based on intracortical micro stimulation of the visual cortex. Brain 119(2), 507–522 (1996)

    Article  Google Scholar 

  40. Davis, T.S., et al.: Spatial and temporal characteristics of V1 microstimulation during chronic implantation of a microelectrode array in a behaving macaque. J. Neural Eng. 9(6), 65003 (2012)

    Article  Google Scholar 

  41. Foroushani, A.N., Pack, C.C., Sawan, M.: Cortical visual prostheses: from microstimulation to functional percept. J. Neural Eng. 15(2), 21005 (2018)

    Article  Google Scholar 

  42. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation (2015)

    Google Scholar 

  43. Benjamin Naecker, N.M.: pyret: retinal data analysis in Python - pyret 0.6.0 documentation

    Google Scholar 

Download references

Acknowledgments

This work is supported by the Programa de Ayudas a Grupos de Excelencia de la Región de Murcia, Fundación Séneca, Agencia de Ciencia y Tecnología de la Región de Murcia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Garrigós .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lozano, A. et al. (2019). Neurolight Alpha: Interfacing Computational Neural Models for Stimulus Modulation in Cortical Visual Neuroprostheses. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds) Understanding the Brain Function and Emotions. IWINAC 2019. Lecture Notes in Computer Science(), vol 11486. Springer, Cham. https://doi.org/10.1007/978-3-030-19591-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19591-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19590-8

  • Online ISBN: 978-3-030-19591-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics