Extending Volunteered Geographic Information (VGI) with Geospatial Software as a Service: Participatory Asset Mapping Infrastructures for Urban Health

  • Marynia KolakEmail author
  • Michael Steptoe
  • Holly Manprisio
  • Lisa Azu-Popow
  • Megan Hinchy
  • Geraldine Malana
  • Ross Maciejewski
Part of the Global Perspectives on Health Geography book series (GPHG)


Community asset mapping is an essential step in public health practice for identifying community strengths, needs, and urban health intervention strategies. Community-based Volunteered Geographic Information (VGI) could facilitate customized asset mapping to link free and accessible technologies with community needs in a mutually shared, knowledge-producing process. To address this issue, we demonstrate a participatory asset mapping infrastructure developed with a Chicago community using VGI concepts, participatory design principles, and geospatial Software as a Service (SaaS) using a suite of free and/or open tools. Participatory mapping infrastructures using decentralized system architecture can link data and mapping services, transforming siloed datasets to integrated systems managed and shared across multiple organizations. The final asset mapping infrastructure includes a flexible and cloud-based data management system, an interactive web map, and community asset data stream. By allowing for a dynamic, reproducible, adaptive, and participatory asset mapping system, health systems infrastructures can further support community health improvement frameworks by facilitating shared data and decision support implementations across health partners. Such “community-engaged VGI” is essential in integrating previously siloed data systems and facilitating means of collaboration with health systems in urban health research and practice.


Community asset mapping Volunteered Geographic Information (VGI) Participatory design Spatial Data Infrastructure (SDI) Geospatial Software as a Service (GeoSaaS) 


  1. Ananthakrishnan, R., Chard, K., Foster, I., & Tuecke, S. (2015). Globus platform-as-a-service for collaborative science applications. Concurrency and Computation: Practice and Experience, 27(2), 290–305.CrossRefGoogle Scholar
  2. Bittner, C., Glasze, G., & Turk, C. (2013). Tracing contingencies: Analyzing the political in assemblages of web 2.0 cartographies. GeoJournal, 78(6), 935–948.CrossRefGoogle Scholar
  3. Bote-Lorenzo, M. L., Dimitriadis, Y. A., & G mez-Sánchez, E. (2004). Grid characteristics and uses: A grid definition. In Grid computing (pp. 291–298). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  4. Boulos, M. N. K., Resch, B., Crowley, D., Breslin, J., Sohn, G., Burtner, R., et al. (2011). Crowdsourcing, citizen sensing and sensor web technologies for public and environmental health surveillance and crisis management: Trends, OGC standards and application examples. International Journal of Health, 10, 67.Google Scholar
  5. Brandusescu, A., & Sieber, R. E. (2018). The spatial knowledge politics (SKP) of crisis mapping for community development. GeoJournal, 1, 1–16.Google Scholar
  6. Brown, G., Rhodes, J., & Dade, M. (2018). An evaluation of participatory mapping methods to assess urban park benefits. Landscape and Urban Planning, 178, 18–31.CrossRefGoogle Scholar
  7. Burns, R. (2015). Rethinking big data in digital humanitarianism: Practices, epistemologies, and social relations. GeoJournal, 80(4), 477–490.CrossRefGoogle Scholar
  8. Center for Disease and Control (CDC). (2015). Community health improvement navigator.Google Scholar
  9. Chicago Department of Public Health. (2017). Chicago health atlas resources.
  10. Cinnamon, J., & Schuurman, N. (2013). Confronting the data-divide in a time of spatial turns and volunteered geographic information. GeoJournal, 78(4), 657–674.CrossRefGoogle Scholar
  11. Cochrane, L., & Corbett, J. (2018). Participatory mapping. Handbook of communication for development and social change, 1–9.Google Scholar
  12. Cochrane, L., Corbett, J., Evans, M., & Gill, M. (2017). Searching for social justice in GIScience publications. Cartography and Geographic Information Science, 44(6), 507–520.CrossRefGoogle Scholar
  13. Coetzee, S., & Wolff-Piggott, B. (2015). A review of sdi literature: Searching for signs of inverse infrastructures. In Cartography-maps connecting the world (pp. 113–127). Cham: Springer.CrossRefGoogle Scholar
  14. Eder, D. (2015). Searchable map template with Google fusion tables.
  15. Egyedi, T. M., & Mehos, D. C. (Eds.). (2012). Inverse Infrastructures: Disrupting networks from below. Edward Elgar Publishing.Google Scholar
  16. Egyedi, T. M., Vrancken, J. L., & Ubacht, J. (2007). Inverse infrastructures: Coordination in self-organizing systems. In Standardization and innovation in information technology, 2007. SIIT 2007. 5th international conference on (pp. 23–36). IEEE.Google Scholar
  17. Elwood, S. (2006). Critical issues in participatory GIS: Deconstructions, reconstructions, and new research directions. Transactions in GIS, 10(5), 693–708.CrossRefGoogle Scholar
  18. Elwood, S. (2008). Volunteered geographic information: Future research directions motivated by critical, participatory, and feminist GIS. GeoJournal, 72(3–4), 173–183.CrossRefGoogle Scholar
  19. Elwood, S. (2008b). Volunteered geographic information: key questions, concepts and methods to guide emerging research and practice. GeoJournal, 72(3-4), 133–135.Google Scholar
  20. Elwood, S. (2009). Multiple representations, significations, and epistemologies in community-based GIS. In Qualitative GIS: A mixed methods approach (pp. 57–74).Google Scholar
  21. Elwood, S., Goodchild, M. F., & Sui, D. Z. (2012). Researching volunteered geographic information: Spatial data, geographic research, and new social practice. Annals of the Association of American Geographers, 102(3), 571–590.CrossRefGoogle Scholar
  22. English, P. B., Richardson, M. J., & Garzón-Galvis, C. (2018). From crowdsourcing to extreme citizen science: Participatory research for environmental health. Annual Review of Public Health, 39, 335–350.CrossRefGoogle Scholar
  23. Fast, V., & Rinner, C. (2018). Toward a participatory VGI methodology: Crowdsourcing information on regional food assets. International Journal of Geographical Information Science, 1, 1–16.Google Scholar
  24. Foster, I., & Kesselman, C. (1999). “The globus toolkit.” The grid: blueprint for a new computing infrastructure: 259-278. Morgan Kaufmann Publishers Inc. San Francisco, CA, USA. ISBN:1-55860-475-8.Google Scholar
  25. Foster, I., Kesselman, C., & Tuecke, S. (2001). The anatomy of the grid: Enabling scalable virtual organizations. The International Journal of High Performance Computing Applications, 15(3), 200–222.CrossRefGoogle Scholar
  26. Gao, S., Li, L., Li, W., Janowicz, K., & Zhang, Y. (2017). Constructing gazetteers from volunteered Big Geo-Data based on Hadoop. Computers, Environment and Urban Systems, 61, 172–186.CrossRefGoogle Scholar
  27. Ghose, R., & Welcenbach, T. (2018). “Power to the people”: Contesting urban poverty and power inequities through open GIS. The Canadian Geographer/Le Géographe canadien, 62(1), 67–80.CrossRefGoogle Scholar
  28. Glasze, G., & Perkins, C. (2015). Social and political dimensions of the OpenStreetMap project: Towards a critical geographical research agenda. In OpenStreetMap in GIScience (pp. 143–166). Cham: Springer.Google Scholar
  29. Goodchild, M. F. (2007). Citizens as sensors: The world of volunteered geography. GeoJournal, 69(4), 211–221.CrossRefGoogle Scholar
  30. Goranson, C., Thihalolipavan, S., & di Tada, N. (2013). VGI and public health: Possibilities and pitfalls. In Crowdsourcing geographic knowledge (pp. 329–340). Dordrecht: Springer.CrossRefGoogle Scholar
  31. Groves, P., Kayyali, B., Knott, D., & Van Kuiken, S. (2013). The ‘big data’ revolution in healthcare. McKinsey Quarterly, 2, 3.Google Scholar
  32. Hardy, D., Frew, J., & Goodchild, M. F. (2012). Volunteered geographic information production as a spatial process. International Journal of Geographical Information Science, 26(7), 1191–1212.CrossRefGoogle Scholar
  33. Healthy People. Secretary’s Advisory Committee on Health Promotion and Disease Prevention Objectives for 2020. Healthy People 2020: An opportunity to address the societal determinants of health in the United States.
  34. Hecht, B. J., & Gergle, D. (2010, February). On the localness of user-generated content. In Proceedings of the 2010 ACM conference on Computer supported cooperative work (pp. 229–232). ACM.Google Scholar
  35. Hobona, G., Jackson, M., & Anand, S. (2012). Implementing Geospatial Web Services for Cloud Computing. In I. Management Association (Ed.), Grid and cloud computing: Concepts, methodologies, tools and applications (pp. 615–636). Hershey, PA: IGI Global.
  36. Kang, S. Y., & Lee, Y. H. (2014). The implementation of geo-cloud SaaS system for supporting the civil engineering design using BRMS open software. 2014 fifth international conference on computing for geospatial research and application (pp. 49–50).Google Scholar
  37. Kerka, S. (2003). Community asset mapping. Trends and Issues Alert, (47). ERIC Clearinghouse on Adult, Career, and Vocational Education, Columbus, OH.Google Scholar
  38. Kolak, M., & Stepanoe, M. (2016). “HumboldtResources: Alpha” Zenodo.
  39. Korpilo, S., Virtanen, T., Saukkonen, T., & Lehvävirta, S. (2018). More than A to B: Understanding and managing visitor spatial behaviour in urban forests using public participation GIS. Journal of Environmental Management, 207, 124–133.CrossRefGoogle Scholar
  40. Kramer, S., Amos, T., Lazarus, S., & Seedat, M. (2012). The philosophical assumptions, utility and challenges of asset mapping approaches to community engagement. Journal of Psychology in Africa, 22(4), 537–544.CrossRefGoogle Scholar
  41. Kretzmann, J. P., & McKnight, J. (1993). Building communities from the inside out (pp. 2–10). Evanston: Center for Urban Affairs and Policy Research, Neighborhood Innovations Network.Google Scholar
  42. Lightfoot, E., McCleary, J. S., & Lum, T. (2014). Asset mapping as a research tool for community-based participatory research in social work. Social Work Research, 38(1), 59–64.CrossRefGoogle Scholar
  43. Mandarano, L., Meenar, M., & Steins, C. (2010). Building social capital in the digital age of civic engagement. Journal of Planning Literature, 25(2), 123–135.CrossRefGoogle Scholar
  44. Meier, P. (2011). Verifying crowdsourced social media reports for live crisis mapping: An introduction to information forensics. iRevolution blog.Google Scholar
  45. Pramono, A. H., Natalia, I., & Janting, Y. (2006). Ten years after: Counter-mapping and the Dayak lands in West Kalimantan, Indonesia. Digital Library of the Commons.Google Scholar
  46. Qazi, N., Smyth, D., & McCarthy, T. (2013). Towards a GIS-based decision support system on the Amazon cloud for the modelling of domestic wastewater treatment solutions in Wexford, Ireland. 2013 Uksim 15Th international conference on computer modelling and simulation, 236–240.Google Scholar
  47. Raymond, C. M., Gottwald, S., Kuoppa, J., & Kyttae, M. (2016). Integrating multiple elements of environmental justice into urban blue space planning using public participation geographic information systems. Landscape and Urban Planning, 153, 198–208.CrossRefGoogle Scholar
  48. Sadler, R. C. (2016). Integrating expert knowledge in a GIS to optimize siting decisions for small-scale healthy food retail interventions. International Journal of Health Geographics, 15(1), 19.CrossRefGoogle Scholar
  49. Sieber, R. E., Robinson, P. J., Johnson, P. A., & Corbett, J. M. (2016). Doing public participation on the geospatial web. Annals of the American Association of Geographers, 106(5), 1030–1046.CrossRefGoogle Scholar
  50. Solís, P., McCusker, B., Menkiti, N., Cowan, N., & Blevins, C. (2018). Engaging global youth in participatory spatial data creation for the UN sustainable development goals: The case of open mapping for malaria prevention. Applied Geography, 98, 143–155.CrossRefGoogle Scholar
  51. Spinuzzi, C. (2005). The methodology of participatory design. Technical Communication, 52(2), 163–174.Google Scholar
  52. Stensgaard, A. S., Saarnak, C. F. L., Utzinger, J., Vounatsou, P., Simoonga, C., Mushinge, G., et al. (2009). Virtual globes and geospatial health: The potential of new tools in the management and control of vector-borne diseases. Geospatial Health, 3(2), 127–114.CrossRefGoogle Scholar
  53. Tsou, M. H., & Buttenfield, B. P. (2002). A dynamic architecture for distributing geographic information services. Transactions in GIS, 6(4), 355–381.CrossRefGoogle Scholar
  54. Vaquero, L. M., Rodero-Merino, L., Caceres, J., & Lindner, M. (2008). A break in the clouds: Towards a cloud definition. ACM SIGCOMM Computer Communication Review, 39(1), 50–55.CrossRefGoogle Scholar
  55. Vree, W. G. (2003). Internet en Rijkswaterstaat: een ICT-infrastructuur langs water en wegen.Google Scholar
  56. Wang, L., Tao, J., Kunze, M., Castellanos, A. C., Kramer, D., & Karl, W. (2008, September). Scientific cloud computing: Early definition and experience. In High performance computing and communications, 2008. HPCC’08. 10th IEEE international conference on (pp. 825–830). IEEE.Google Scholar
  57. West Humboldt Park Development Council, 2013.Google Scholar
  58. Yang, C., Li, W., Xie, J., & Zhou, B. (2008). Distributed geospatial information processing: Sharing distributed geospatial resources to support Digital Earth. International Journal of Digital Earth, 1(3), 259–278.CrossRefGoogle Scholar
  59. Yu, J., Wu, J., & Sarwat, M. (2015). Geospark: A cluster computing framework for processing large-scale spatial data. In Proceedings of the 23rd SIGSPATIAL international conference on advances in geographic information systems (p. 70).Google Scholar
  60. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin, M. J., Shenker, S., & Stoica, I. (2012). Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. In Proceedings of the 9th USENIX conference on networked systems design and implementation (Vol. 2).Google Scholar
  61. Zaharia, M., Franklin, M., Ghodsi, A., Gonzalez, J., Shenker, S., Stoica, I., et al. (2016). Apache spark. Communications of the ACM, 59(11), 56–65.CrossRefGoogle Scholar
  62. Zhan, J., Sha, Y., & Yan, J. (2012). Design and implementation of logistics vehicle monitoring system based on the SaaS model. 2012 fifth international conference on business intelligence and financial engineering (pp. 524–526).CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Marynia Kolak
    • 1
    Email author
  • Michael Steptoe
    • 2
  • Holly Manprisio
    • 3
  • Lisa Azu-Popow
    • 3
  • Megan Hinchy
    • 4
  • Geraldine Malana
    • 5
  • Ross Maciejewski
    • 2
  1. 1.Center for Spatial Data Science, University of ChicagoChicagoUSA
  2. 2.School of Computing, Informatics & Decision Systems EngineeringArizona State UniversityTempeUSA
  3. 3.Community Services/External AffairsNorthwestern Memorial HealthCareChicagoUSA
  4. 4.Consortium to Lower Obesity in Chicago’s ChildrenAnn and Robert H. Lurie Children’s HospitalChicagoUSA
  5. 5.Erie Humboldt Park Health CenterChicagoUSA

Personalised recommendations