Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description Logic. Cambridge University Press, Cambridge (2017). https://doi.org/10.1017/9781139025355
CrossRef
MATH
Google Scholar
Bednarczyk, B., Kieronski, E., Witkowski, P.: On the complexity of graded modal logics with converse. CoRR abs/1812.04413 (2018). http://arxiv.org/abs/1812.04413
Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press, New York (2001). https://doi.org/10.1017/CBO9781107050884
Chen, C.-C., Lin, I.-P.: The complexity of propositional modal theories and the complexity of consistency of propositional modal theories. In: Nerode, A., Matiyasevich, Y.V. (eds.) LFCS 1994. LNCS, vol. 813, pp. 69–80. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58140-5_8
CrossRef
Google Scholar
Demri, S., de Nivelle, H.: Deciding regular grammar logics with converse through first-order logic. J. Logic Lang. Inf. 14(3), 289–329 (2005). https://doi.org/10.1007/s10849-005-5788-9
MathSciNet
CrossRef
MATH
Google Scholar
Gutiérrez-Basulto, V., Ibáñez-García, Y.A., Jung, J.C.: Number restrictions on transitive roles in description logics with nominals. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, California, USA, 4–9 February 2017, pp. 1121–1127 (2017)
Google Scholar
Kazakov, Y., Pratt-Hartmann, I.: A note on the complexity of the satisfiability problem for graded modal logics. In: Proceedings of the 24th Annual IEEE Symposium on Logic in Computer Science, LICS 2009, Los Angeles, CA, USA, 11–14 August 2009, pp. 407–416 (2009). https://doi.org/10.1109/LICS.2009.17
Kazakov, Y., Sattler, U., Zolin, E.: How many legs do I have? Non-simple roles in number restrictions revisited. In: 2007 Proceedings of 14th International Conference on Logic for Programming, Artificial Intelligence, and Reasoning, LPAR 2007, Yerevan, Armenia, 15–19 October, pp. 303–317 (2007). https://doi.org/10.1007/978-3-540-75560-9_23
Ladner, R.E.: The computational complexity of provability in systems of modal propositional logic. SIAM J. Comput. 6(3), 467–480 (1977). https://doi.org/10.1137/0206033
MathSciNet
CrossRef
MATH
Google Scholar
Blackburn, P., van Benthem, J.: Handbook of Modal Logic, chapter Modal Logic: A Semantic Perspective, pp. 255–325. Elsevier (2006)
Google Scholar
Pratt-Hartmann, I.: Complexity of the two-variable fragment with counting quantifiers. J. Logic Lang. Inf. 14(3), 369–395 (2005). https://doi.org/10.1007/s10849-005-5791-1
MathSciNet
CrossRef
MATH
Google Scholar
Pratt-Hartmann, I.: Complexity of the guarded two-variable fragment with counting quantifiers. J. Log. Comput. 17(1), 133–155 (2007). https://doi.org/10.1093/logcom/exl034
MathSciNet
CrossRef
MATH
Google Scholar
Pratt-Hartmann, I.: On the computational complexity of the numerically definite syllogistic and related logics. Bull. Symbolic Logic 14(1), 1–28 (2008). https://doi.org/10.2178/bsl/1208358842
MathSciNet
CrossRef
MATH
Google Scholar
Tobies, S.: PSPACE reasoning for graded modal logics. J. Log. Comput. 11(1), 85–106 (2001). https://doi.org/10.1093/logcom/11.1.85
MathSciNet
CrossRef
MATH
Google Scholar
Zolin, E.: Undecidability of the transitive graded modal logic with converse. J. Log. Comput. 27(5), 1399–1420 (2017). https://doi.org/10.1093/logcom/exw026
MathSciNet
CrossRef
MATH
Google Scholar