Skip to main content

Advanced Energy Storage Devices: Principles and Potential Applications in Sustainable Energetics

  • Chapter
  • First Online:
Sustainability Perspectives: Science, Policy and Practice

Part of the book series: Strategies for Sustainability ((STSU))

  • 777 Accesses

Abstract

Organic conjugated polymer based flexible sustainable storage devices have potential future applications in battery electric vehicles, rechargeable batteries, fuel cell vehicles due to their remarkable conductivity, low cost, easy fabrication in the industrial scale, stability (chemical, thermal and environmental), optical property, electroluminescence, doping-dedoping characteristics and controlling dimension (size and morphological structures) of electrode materials in the nanoscale from zero dimension (0D) to three dimension (3D). However, their application is limited due to low energy density, and loss of electrochemical properties at high temperatures. This can be overcome by functionalization of various metal oxides (e.g. TiO2, MnO2, ZnO, Fe3O4, SiO2, etc.), and nanocarbons (e.g. 3D graphene nanosheets, 1D carbon nanotubes, 0D graphene quantum dots, carbon nanofibers, etc.) with novel organic conjugated polymers by using various synthesis methodologies. It is due to well-defined structures, large surface area, excellent electrical and mechanical properties of nanostructured metal oxides or nanocarbons-functionalized conducting polymer hybrids.

The objectives of this chapter are to summarize and discuss recent developments of low cost and highly efficient sustainable energy storage devices based on various organic conjugated polymer/nanostructured metal oxides or nanocarbon hybrid flexible electrodes. Initially, various types of organic conjugated polymers and their surface modification techniques are introduced. Later, functionalization routes of metal oxides or nanocarbons with various conjugated polymers (e.g. polyaniline, polypyrrole, polythiophenes, their derivatives, copolymers, etc.) are discussed and it involves various fabrication methods such as in-situ, ex-situ, electrochemical polymerization, soapless, emulsion polymerization, inverse emulsion polymerization, atom-transfer radical polymerization (ATRP), self-assembly process, etc. These fabrication techniques are depending on conjugated monomers and nanofillers types employed. Such techniques would produce novel multifunctional well-defined nanostructured hybrids consisting of metal oxides or carbons and organic conjugated polymers that have potential for applications in sustainable energy storage devices (supercapacitors, batteries, fuel cells, solar cells, and photoanodes). Structural, morphological and electrochemical (specific capacitance, capacity retention, voltage, energy density, power density, type of electrolytes, etc.) of these sustainable electrode materials are discussed. We summarize the recent work in the development of novel low cost and high-performance highly flexible nanostructured sustainable devices and their potential applications for the energy storage systems as mentioned above.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelhamid ME, O’Mullane AP, Snook GA (2015) Storing energy in plastics: a review on conducting polymers & their role in electrochemical energy storage. Rsc Adv 5:11611–11626

    Article  CAS  Google Scholar 

  • Alves APP, Trigueiro JPC, Calado HD, Silva GG (2016) Poly(3-hexylthiophene)-multi-walled carbon nanotube (1:1) hybrids: structure and electrochemical properties. Electrochim Acta 209:111–120. https://doi.org/10.1016/j.electacta.2016.04.187

    Article  CAS  Google Scholar 

  • Ambade RB, Ambade SB, Shrestha NK, Nah YC, Han SH, Lee W, Lee SH (2013) Polythiophene infiltrated TiO2 nanotubes as high-performance supercapacitor electrodes. Chem Commun 49:2308. https://doi.org/10.1039/c3cc00065f

    Article  CAS  Google Scholar 

  • Ambade RB, Ambade SB, Shrestha NK, Salunkhe RR, Lee W, Bagde SS, Kim JH, Stadler FJ, Yamauchi Y, Lee SH (2017) Controlled growth of polythiophene nanofibers in TiO2 nanotube arrays for supercapacitor applications. J Mater Chem A 5:172–180. https://doi.org/10.1039/c6ta08038c

    Article  CAS  Google Scholar 

  • Aradilla D, Gao F, Lewes-Malandrakis G, Müller-Sebert W, Gentile P, Boniface M, Aldakov D, Iliev B, Schubert TJS, Nebel CE, Bidan G (2016) Designing 3D multihierarchical heteronanostructures for high-performance on-chip hybrid supercapacitors: Poly(3,4-(ethylenedioxy)thiophene)-coated diamond/silicon nanowire electrodes in an aprotic ionic liquid. ACS Appl Mater Interfaces 8:18069–18077. https://doi.org/10.1021/acsami.6b04816

    Article  CAS  Google Scholar 

  • Bélanger D, Ren X, Davey J, Uribe F, Gottesfeld S (2000) Characterization and long-term performance of polyaniline-based electrochemical capacitors. J Electrochem Soc 147:2923–2929

    Article  Google Scholar 

  • Bhat DK, Kumar MS (2007) N and P doped poly(3,4-ethylenedioxythiophene) electrode materials for symmetric redox supercapacitors. J Mater Sci 42:8158–8162. https://doi.org/10.1007/s10853-007-1704-9

    Article  CAS  Google Scholar 

  • Cao J, Wang Y, Chen J, Li X, Walsh FC, Ouyang JH, Jia D, Zhou Y (2015) Three-dimensional graphene oxide/polypyrrole composite electrodes fabricated by one-step electrodeposition for high performance supercapacitors. J Mater Chem A 3:14445–14457. https://doi.org/10.1039/c5ta02920a

    Article  CAS  Google Scholar 

  • Çelik B, Çelik İ, Dolaş H, Görçay H, Şahin Y, Saraç AS, Pekmez K (2014) Electrochemical synthesis, characterization and capacitive properties of novel thiophene based conjugated polymer. React Funct Polym 83:107–112. https://doi.org/10.1016/j.reactfunctpolym.2014.07.014

    Article  CAS  Google Scholar 

  • Chen WC, Wen TC, Teng H (2003) Polyaniline-deposited porous carbon electrode for supercapacitor. Electrochim Acta 48:641–649

    Article  CAS  Google Scholar 

  • Chen GF, Su YZ, Kuang PY, Liu ZQ, Chen DY, Wu X, Li N, Qiao SZ (2015) Polypyrrole shell@3d-ni metal core structured electrodes for high-performance supercapacitors. Chem A Eur J 21:4614–4621. https://doi.org/10.1002/chem.201405976

    Article  CAS  Google Scholar 

  • Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin LC (2011) Polyaniline-coated electro-etched carbon fiber cloth electrodes for supercapacitors. J Phys Chem C 115:23584–23590

    Article  CAS  Google Scholar 

  • Christinelli WA, Gonçalves R, Pereira EC (2016) A new generation of electrochemical supercapacitors based on layer-by-layer polymer films. J Power Sources 303:73–80. https://doi.org/10.1016/j.jpowsour.2015.10.077

    Article  CAS  Google Scholar 

  • Dyatkin B, Gogotsi O, Malinovskiy B, Zozulya Y, Simon P, Gogotsi Y (2016) High capacitance of coarse-grained carbide derived carbon electrodes. J Power Sources 306:32–41

    Article  CAS  Google Scholar 

  • Ermiş E, Yiğit D, Güllü M (2013) Synthesis of poly(n-alkyl-3,4-dihydrothieno[3,4-b][1,4]oxazine) derivatives and investigation of their supercapacitive performances for charge storage applications. Electrochim Acta 90:623–633. https://doi.org/10.1016/j.electacta.2012.12.052

    Article  CAS  Google Scholar 

  • Fonseca CP, Benedetti JE, Neves S (2006) Poly(3-methyl thiophene)/PVDF composite as an electrode for supercapacitors. J Power Sources 158:789–794. https://doi.org/10.1016/j.jpowsour.2005.08.050

    Article  CAS  Google Scholar 

  • Ge D, Yang L, Fan L, Zhang C, Xiao X, Gogotsi Y, Yang S (2015) Foldable supercapacitors from triple networks of macroporous cellulose fibers, single-walled carbon nanotubes and polyaniline nanoribbons. Nano Energy 11:568–578

    Article  CAS  Google Scholar 

  • González A, Goikolea E, Barrena JA, Mysyk R (2016) Review on supercapacitors: technologies and materials. Renew Sust Energ Rev 58:1189–1206

    Article  CAS  Google Scholar 

  • Gopalakrishnan K, Sultan S, Govindaraj A, Rao C (2015) Supercapacitors based on composites of pani with nanosheets of nitrogen-doped RGO, bc1. 5n, MoS2 and ws2. Nano Energy 12:52–58

    Article  CAS  Google Scholar 

  • Hao Q, Xia X, Lei W, Wang W, Qiu J (2015) Facile synthesis of sandwich-like polyaniline/boron-doped graphene nano hybrid for supercapacitors. Carbon 81:552–563

    Article  CAS  Google Scholar 

  • Hong X, Zhang B, Murphy E, Zou J, Kim F (2017) Three-dimensional reduced graphene oxide/polyaniline nanocomposite film prepared by diffusion driven layer-by-layer assembly for high-performance supercapacitors. J Power Sources 343:60–66

    Article  CAS  Google Scholar 

  • Hu CC, Li WY, Lin JY (2004) The capacitive characteristics of supercapacitors consisting of activated carbon fabric–polyaniline composites in nano3. J Power Sources 137:152–157

    Article  CAS  Google Scholar 

  • Hür E, Varol GA, Arslan A (2013) The study of polythiophene, poly(3-methylthiophene) and poly(3,4-ethylenedioxythiophene) on pencil graphite electrode as an electrode active material for supercapacitor applications. Synth Met 184:16–22. https://doi.org/10.1016/j.synthmet.2013.09.028

    Article  CAS  Google Scholar 

  • Hür E, Arslan A, Hür D (2016) Synthesis and electrochemical polymerization of a novel 2-(thiophen-2-yl)-4-(thiophen-2-ylmethylene)oxazol-5(4h)-one monomer for supercapacitor applications. React Funct Polym 99:35–41. https://doi.org/10.1016/j.reactfunctpolym.2015.12.001

    Article  CAS  Google Scholar 

  • Inagaki M, Konno H, Tanaike O (2010) Carbon materials for electrochemical capacitors. J Power Sources 195:7880–7903

    Article  CAS  Google Scholar 

  • Karthikeyan G, Sahoo S, Nayak GC, Das CK (2011) Investigations on doping of poly(3-methyl-thiophene) composites for supercapacitor applications. Macromol Res 20:351–357. https://doi.org/10.1007/s13233-012-0020-7

    Article  CAS  Google Scholar 

  • Kashani H, Chen L, Ito Y, Han J, Hirata A, Chen M (2016) Bicontinuous nanotubular graphene–polypyrrole hybrid for high performance flexible supercapacitors. Nano Energy 19:391–400. https://doi.org/10.1016/j.nanoen.2015.11.029

    Article  CAS  Google Scholar 

  • Kumar NA, Choi HJ, Bund A, Baek JB, Jeong YT (2012) Electrochemical supercapacitors based on a novel graphene/conjugated polymer composite system. J Mater Chem 22:12268. https://doi.org/10.1039/c2jm30701d

    Article  CAS  Google Scholar 

  • Li H, Wang J, Chu Q, Wang Z, Zhang F, Wang S (2009) Theoretical and experimental specific capacitance of polyaniline in sulfuric acid. J Power Sources 190:578–586

    Article  CAS  Google Scholar 

  • Li PF, Schon TB, Seferos DS (2015) Thiophene, selenophene, and tellurophene-based three-dimensional organic frameworks. Angew Chem Int Ed 54:9361–9366. https://doi.org/10.1002/anie.201503418

    Article  CAS  Google Scholar 

  • Li T, Zhu W, Shen R, Wang HY, Chen W, Hao SJ, Li Y, Gu ZG, Li Z (2018) Three-dimensional conductive porous organic polymers based on tetrahedral polythiophene for high-performance supercapacitors. New J Chem 42:6247–6255. https://doi.org/10.1039/c8nj00667a

    Article  CAS  Google Scholar 

  • Liu R, Lee SB (2008) MnO2/poly(3,4-ethylenedioxythiophene) coaxial nanowires by one-step coelectrodeposition for electrochemical energy storage. J Am Chem Soc 130:2942–2943. https://doi.org/10.1021/ja7112382

    Article  CAS  Google Scholar 

  • Liu DY, Reynolds JR (2010) Dioxythiophene-based polymer electrodes for supercapacitor modules. ACS Appl Mater Interfaces 2:3586–3593. https://doi.org/10.1021/am1007744

    Article  CAS  Google Scholar 

  • Liu R, Cho SI, Lee SB (2008) Poly(3,4-ethylenedioxythiophene) nanotubes as electrode materials for a high-powered supercapacitor. Nanotechnology 19:215710. https://doi.org/10.1088/0957-4484/19/21/215710

    Article  CAS  Google Scholar 

  • Liu Y, Zhou J, Tang J, Tang W (2015) Three-dimensional, chemically bonded polypyrrole/bacterial cellulose/graphene composites for high-performance supercapacitors. Chem Mater 27:7034–7041. https://doi.org/10.1021/acs.chemmater.5b03060

    Article  CAS  Google Scholar 

  • Lota K, Khomenko V, Frackowiak E (2004) Capacitance properties of poly (3, 4-ethylenedioxythiophene)/carbon nanotubes composites. J Phys Chem Solids 65:295–301

    Article  CAS  Google Scholar 

  • Luo J, Zhong W, Zou Y, Xiong C, Yang W (2016) Preparation of morphology-controllable polyaniline and polyaniline/graphene hydrogels for high performance binder-free supercapacitor electrodes. J Power Sources 319:73–81

    Article  CAS  Google Scholar 

  • Male U, Singu BS, Srinivasan P (2015) Aqueous, interfacial, and electrochemical polymerization pathways of aniline with thiophene: nano size materials for supercapacitor. J Appl Polym Sci 132:n/a–n/a. https://doi.org/10.1002/app.42013

  • Mastragostino M (2002) Conducting polymers as electrode materials in supercapacitors. Solid State Ionics 148:493–498. https://doi.org/10.1016/s0167-2738(02)00093-0

    Article  CAS  Google Scholar 

  • Mo D, Zhou W, Ma X, Xu J (2015) Facile electrochemical polymerization of 2-(thiophen-2-yl)furan and the enhanced capacitance properties of its polymer in acetonitrile electrolyte containing boron trifluoride diethyl etherate. Electrochim Acta 155:29–37. https://doi.org/10.1016/j.electacta.2014.12.110

    Article  CAS  Google Scholar 

  • Mondal S, Rana U, Malik S (2015) Graphene quantum dot-doped polyaniline nanofiber as high performance supercapacitor electrode materials. Chem Commun 51:12365–12368

    Article  CAS  Google Scholar 

  • Nyholm L, Nyström G, Mihranyan A, Strømme M (2011) Toward flexible polymer and paper-based energy storage devices. Adv Mater 23:3751–3769

    CAS  Google Scholar 

  • Otero TF, Arias-Pardilla J, Herrera H, Segura JL, Seoane C (2011) Electropolymerization of naphthaleneamidinemonoimide-modified poly(thiophene). Phys Chem Chem Phys 13:16513. https://doi.org/10.1039/c1cp21837a

    Article  CAS  Google Scholar 

  • Pandey RK, Singh AK, Prakash R (2014) Directed self-assembly of poly(3,3”’-dialkylquarterthiophene) polymer thin film: effect of annealing temperature. J Phys Chemis C 118:22943–22951. https://doi.org/10.1021/jp507321z

    Article  CAS  Google Scholar 

  • Pan L, Qiu H, Dou C, Li Y, Pu L, Xu J, Shi Y (2010) Conducting polymer nanostructures: template synthesis and applications in energy storage. Int J Mol Sci 11:2636–2657

    Article  CAS  Google Scholar 

  • Pardieu E, Pronkin S, Dolci M, Dintzer T, Pichon BP, Begin D, Pham-Huu C, Schaaf P, Begin-Colin S, Boulmedais F (2015) Hybrid layer-by-layer composites based on a conducting polyelectrolyte and fe3o4 nanostructures grafted onto graphene for supercapacitor application. J Mater Chem A 3:22877–22885. https://doi.org/10.1039/c5ta05132k

    Article  CAS  Google Scholar 

  • Pasquier AD, Laforgue A, Simon P (2004) Li4ti5o12/poly(methyl)thiophene asymmetric hybrid electrochemical device. J Power Sources 125:95–102. https://doi.org/10.1016/j.jpowsour.2003.07.015

    Article  CAS  Google Scholar 

  • Patil BH, Patil SJ, Lokhande CD (2014) Electrochemical characterization of chemically synthesized polythiophene thin films: performance of asymmetric supercapacitor device. Electroanalysis 26:2023–2032. https://doi.org/10.1002/elan.201400284

    Article  CAS  Google Scholar 

  • Potphode DD, Mishra SP, Sivaraman P, Patri M (2017) Asymmetric supercapacitor devices based on dendritic conducting polymer and activated carbon. Electrochim Acta 230:29–38. https://doi.org/10.1016/j.electacta.2017.01.168

    Article  CAS  Google Scholar 

  • Roberts ME, Wheeler DR, McKenzie BB, Bunker BC (2009) High specific capacitance conducting polymer supercapacitor electrodes based on poly(tris(thiophenylphenyl)amine). J Mater Chemis 19:6977. https://doi.org/10.1039/b916666a

    Article  CAS  Google Scholar 

  • Salunkhe RR, Hsu SH, Wu KC, Yamauchi Y (2014) Large-scale synthesis of reduced graphene oxides with uniformly coated polyaniline for supercapacitor applications. ChemSusChem 7:1551–1556

    Article  CAS  Google Scholar 

  • Senthilkumar B, Thenamirtham P, Selvan RK (2011) Structural and electrochemical properties of polythiophene. Appl Surf Sci 257:9063–9067. https://doi.org/10.1016/j.apsusc.2011.05.100

    Article  CAS  Google Scholar 

  • Sharma S, Soni R, Kurungot S, Asha SK (2018) Naphthalene diimide copolymers by direct arylation polycondensation as highly stable supercapacitor electrode materials. Macromolecules 51:954–965. https://doi.org/10.1021/acs.macromol.7b02425

    Article  CAS  Google Scholar 

  • Shi Y, Peng L, Ding Y, Zhao Y, Yu G (2015) Nanostructured conductive polymers for advanced energy storage. Chem Soc Rev 44:6684–6696

    Article  CAS  Google Scholar 

  • Simon P, Gogotsi Y (2010) Materials for electrochemical capacitors. In: Rodgers P (ed) Nanoscience and technology: a collection of reviews from nature journals. World Scientific, Singapore, pp 320–329

    Google Scholar 

  • Sivakkumar S, Kim WJ, Choi JA, MacFarlane DR, Forsyth M, Kim DW (2007) Electrochemical performance of polyaniline nanofibres and polyaniline/multi-walled carbon nanotube composite as an electrode material for aqueous redox supercapacitors. J Power Sources 171:1062–1068

    Article  CAS  Google Scholar 

  • Sivaraman P, bhattacharrya AR, Mishra SP, Thakur AP, Shashidhara K, Samui AB (2013) Asymmetric supercapacitor containing poly(3-methyl thiophene)-multiwalled carbon nanotubes nanocomposites and activated carbon. Electrochim Acta 94:182–191. https://doi.org/10.1016/j.electacta.2013.01.123

  • Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196:1–12

    Article  CAS  Google Scholar 

  • Song Y, Liu TY, Xu XX, Feng DY, Li Y, Liu XX (2015) Pushing the cycling stability limit of polypyrrole for supercapacitors. Adv Funct Mater 25:4626–4632. https://doi.org/10.1002/adfm.201501709

    Article  CAS  Google Scholar 

  • Suematsu S, Oura Y, Tsujimoto H, Kanno H, Naoi K (2000) Conducting polymer films of cross-linked structure and their qcm analysis. Electrochim Acta 45:3813–3821

    Article  CAS  Google Scholar 

  • Tang H, Wang J, Yin H, Zhao H, Wang D, Tang Z (2014) Growth of polypyrrole ultrathin films on MoS2monolayers as high-performance supercapacitor electrodes. Adv Mater 27:1117–1123. https://doi.org/10.1002/adma.201404622

    Article  CAS  Google Scholar 

  • Walton D (1990) Electrically conducting polymers. Mater Des 11:142–152

    Article  CAS  Google Scholar 

  • Wang YG, Li HQ, Xia YY (2006) Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance. Adv Mater 18:2619–2623

    Article  CAS  Google Scholar 

  • Wang G, Zhang L, Zhang J (2012a) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828

    Article  CAS  Google Scholar 

  • Wang YZ, Wang Q, Xie HY, Ho LP, Tan DMF, Diao YY, Chen W, Xie XN (2012b) Fabrication of highly ordered P3HT:PCBM nanostructures and its application as a supercapacitive electrode. Nanoscale 4:3725. https://doi.org/10.1039/c2nr30486d

    Article  CAS  Google Scholar 

  • Wang JG, Wei B, Kang F (2014) Facile synthesis of hierarchical conducting polypyrrole nanostructures via a reactive template of MnO2 and their application in supercapacitors. RSC Adv 4:199–202

    Article  CAS  Google Scholar 

  • Wang J, Wu Z, Hu K, Chen X, Yin H (2015a) High conductivity graphene-like mos2/polyaniline nanocomposites and its application in supercapacitor. J Alloys Compd 619:38–43

    Article  CAS  Google Scholar 

  • Wang S, Ma L, Gan M, Fu S, Dai W, Zhou T, Sun X, Wang H, Wang H (2015b) Free-standing 3D graphene/polyaniline composite film electrodes for high-performance supercapacitors. J Power Sources 299:347–355

    Article  CAS  Google Scholar 

  • Wang Q, Yan J, Fan Z (2016) Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities. Energy Environ Sci 9:729–762

    Article  CAS  Google Scholar 

  • Wang N, Han G, Song H, Xiao Y, Li Y, Zhang Y, Wang H (2018) Integrated flexible supercapacitor based on poly (3, 4-ethylene dioxythiophene) deposited on au/porous polypropylene film/au. J Power Sources 395:228–236. https://doi.org/10.1016/j.jpowsour.2018.05.074

    Article  CAS  Google Scholar 

  • Wen L, Li K, Liu J, Huang Y, Bu F, Zhao B, Xu Y (2017) Graphene/polyaniline@ carbon cloth composite as a high-performance flexible supercapacitor electrode prepared by a one-step electrochemical co-deposition method. RSC Adv 7:7688–7693

    Article  CAS  Google Scholar 

  • Wu G, Tan P, Wang D, Li Z, Peng L, Hu Y, Wang C, Zhu W, Chen S, Chen W (2017a) High-performance supercapacitors based on electrochemical-induced vertical-aligned carbon nanotubes and polyaniline nanocomposite electrodes. Sci Rep 7:43676

    Article  Google Scholar 

  • Wu ZS, Zheng Y, Zheng S, Wang S, Sun C, Parvez K, Ikeda T, Bao X, Müllen K, Feng X (2017b) Supercapacitors: stacked-layer heterostructure films of 2D thiophene nanosheets and graphene for high-rate all-solid-state pseudocapacitors with enhanced volumetric capacitance (adv. mater. 3/2017). Adv Mater 29. https://doi.org/10.1002/adma.201770020

  • Xia C, Chen W, Wang X, Hedhili MN, Wei N, Alshareef HN (2015) Highly stable supercapacitors with conducting polymer core-shell electrodes for energy storage applications. Adv Energy Mater 5:1401805

    Article  CAS  Google Scholar 

  • Xie Y, Xia C, Du H, Wang W (2015) Enhanced electrochemical performance of polyaniline/carbon/titanium nitride nanowire array for flexible supercapacitor. J Power Sources 286:561–570

    Article  CAS  Google Scholar 

  • Xu J, Wang K, Zu SZ, Han BH, Wei Z (2010) Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano 4:5019–5026

    Article  CAS  Google Scholar 

  • Xu J, Wang D, Fan L, Yuan Y, Wei W, Liu R, Gu S, Xu W (2015a) Fabric electrodes coated with polypyrrole nanorods for flexible supercapacitor application prepared via a reactive self-degraded template. Org Electron 26:292–299

    Article  CAS  Google Scholar 

  • Xu J, Wang D, Yuan Y, Wei W, Duan L, Wang L, Bao H, Xu W (2015b) Polypyrrole/reduced graphene oxide coated fabric electrodes for supercapacitor application. Org Electron 24:153–159. https://doi.org/10.1016/j.orgel.2015.05.037

    Article  CAS  Google Scholar 

  • Yan J, Wang Q, Wei T, Fan Z (2014) Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv Energy Mater 4:1300816

    Article  CAS  Google Scholar 

  • Yang C, Wei H, Guan L, Guo J, Wang Y, Yan X, Zhang X, Wei S, Guo Z (2015) Polymer nanocomposites for energy storage, energy saving, and anticorrosion. J Mater Chem A 3:14929–14941

    Article  CAS  Google Scholar 

  • Ye Z, Li T, Ma G, Peng X, Zhao J (2017) Morphology controlled MnO2 electrodeposited on carbon fiber paper for high-performance supercapacitors. J Power Sources 351:51–57

    Article  CAS  Google Scholar 

  • Yin Z, Zheng Q (2012) Controlled synthesis and energy applications of one-dimensional conducting polymer nanostructures: an overview. Adv Energy Mater 2:179–218

    Article  CAS  Google Scholar 

  • Yiğit D, Güngör T, Güllü M (2013) Poly(thieno[3,4-b][1,4]dioxine) and poly([1,4]dioxino[2,3-c]pyrrole) derivatives: p- and n-dopable redox-active electrode materials for solid state supercapacitor applications. Org Electron 14:3249–3259. https://doi.org/10.1016/j.orgel.2013.09.037

    Article  CAS  Google Scholar 

  • Yue B, Wang C, Wagner P, Yang Y, Ding X, Officer DL, Wallace GG (2012) Electrodeposition of pyrrole and 3-(4-tert-butylphenyl)thiophene copolymer for supercapacitor applications. Synth Met 162:2216–2221. https://doi.org/10.1016/j.synthmet.2012.09.024

    Article  CAS  Google Scholar 

  • Yu P, Li Y, Yu X, Zhao X, Wu L, Zhang Q (2013) Polyaniline nanowire arrays aligned on nitrogen-doped carbon fabric for high-performance flexible supercapacitors. Langmuir 29:12051–12058

    Article  CAS  Google Scholar 

  • Yu P, Li Y, Zhao X, Wu L, Zhang Q (2014) Graphene-wrapped polyaniline nanowire arrays on nitrogen-doped carbon fabric as novel flexible hybrid electrode materials for high-performance supercapacitor. Langmuir 30:5306–5313

    Article  CAS  Google Scholar 

  • Yu M, Ma Y, Liu J, Li S (2015) Polyaniline nanocone arrays synthesized on three-dimensional graphene network by electrodeposition for supercapacitor electrodes. Carbon 87:98–105

    Article  CAS  Google Scholar 

  • Zhang LL, Zhao X (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531

    Article  CAS  Google Scholar 

  • Zhang J, Kong LB, Li H, Luo YC, Kang L (2010) Synthesis of polypyrrole film by pulse galvanostatic method and its application as supercapacitor electrode materials. J Mater Sci 45:1947–1954. https://doi.org/10.1007/s10853-009-4186-0

    Article  CAS  Google Scholar 

  • Zhang H, Hu Z, Li M, Hu L, Jiao S (2014) A high-performance supercapacitor based on a polythiophene/multiwalled carbon nanotube composite by electropolymerization in an ionic liquid microemulsion. J Mater Chem A 2:17024–17030. https://doi.org/10.1039/c4ta03369h

    Article  CAS  Google Scholar 

  • Zhang H, Zhang Y, Gu C, Ma Y (2015) Electropolymerized conjugated microporous poly(zinc-porphyrin) films as potential electrode materials in supercapacitors. Adv Energy Mater 5:1402175. https://doi.org/10.1002/aenm.201402175

    Article  CAS  Google Scholar 

  • Zhang L, Huang D, Hu N, Yang C, Li M, Wei H, Yang Z, Su Y, Zhang Y (2017) Three-dimensional structures of graphene/polyaniline hybrid films constructed by steamed water for high-performance supercapacitors. J Power Sources 342:1–8

    Article  CAS  Google Scholar 

  • Zhu J, Sun W, Yang D, Zhang Y, Hoon HH, Zhang H, Yan Q (2015) Multifunctional architectures constructing of pani nanoneedle arrays on MoS2 thin nanosheets for high-energy supercapacitors. Small 11:4123–4129

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kakarla Raghava Reddy or Robert H. Ong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cakici, M., Raghava Reddy, K., Ong, R.H., Chevali, V. (2020). Advanced Energy Storage Devices: Principles and Potential Applications in Sustainable Energetics. In: Khaiter, P., Erechtchoukova, M. (eds) Sustainability Perspectives: Science, Policy and Practice. Strategies for Sustainability. Springer, Cham. https://doi.org/10.1007/978-3-030-19550-2_12

Download citation

Publish with us

Policies and ethics