Autoimmune Ataxias

  • Marios HadjivassiliouEmail author
  • Hiroshi Mitoma
  • Mario Manto
Part of the Contemporary Clinical Neuroscience book series (CCNE)


The dramatic progress to genetically characterise the ataxias, using next-generation sequencing (NGS), has also facilitated our appreciation that a substantial number of sporadic ataxias are not due to genetic defects but likely to be immune-mediated. At the same time, the recent identification of an increasing number of antibodies linked to sporadic ataxias has aided the diagnostic pathway for immune-mediated cerebellar ataxias (IMCAs). However, the diagnosis of IMCA remains problematic if it is solely dependent on the serological screening for such antibodies and also because there is significant phenotypic overlap with non-immune forms of ataxia. In the majority of cases, serological screening for known antibodies associated with IMCA may not be readily available. In others no specific antigenic trigger or associated antibodies have been identified as yet. Therefore, recognition of IMCA relies on clinical expertise, indirect evidence of autoimmunity (additional autoimmune diseases or family history of autoimmune disease) and appropriate investigations. It is imperative to consolidate quickly such a diagnosis as therapeutic interventions can be effective in preserving the cerebellar reserve.


Immune-mediated cerebellar ataxias (IMCAs) Gluten ataxia Anti-GAD ataxia Paraneoplastic cerebellar degeneration Opsoclonus-myoclonus ataxia syndrome Anti-DPPX ataxia Anti-MAG ataxia CLIPPERS syndrome Sjogren’s ataxia Lupus ataxia 


  1. 1.
    Hadjivassiliou M, Martindale J, Shanmugarajah P, et al. Causes of progressive cerebellar ataxia: prospective evaluation of 1500 patients. J Neurol Neurosurg Psychiatry. 2016;88:301. Scholar
  2. 2.
    Hadjivassiliou M. Primary autoimmune cerebellar ataxia (PACA). Adv Clin Neurosci Rehabil. 2010;9:8–11.Google Scholar
  3. 3.
    Hadjivassiliou M, Grunewald RA, Chattopadhyay AK, et al. Clinical, radiological, neurophysiological and neuropathological characteristics of gluten ataxia. Lancet. 1998;352:1582–5.CrossRefGoogle Scholar
  4. 4.
    Sarrigiannis PG, Hoggard N, Aeschlimann D, et al. Myoclonus ataxia and refractory coeliac disease. Cerebellum Ataxias. 2014.
  5. 5.
    Hadjivassiliou M, Grunewald RA, Sanders DS, Shanmugarajah P, Hoggard N. Effect of gluten-free diet on MR spectroscopy in gluten ataxia. Neurology. 2017;89:1–5.CrossRefGoogle Scholar
  6. 6.
    Dietrich W, Ehnis T, Bauer M, et al. Identification of tissue transglutaminase as the autoantigen of celiac disease. Nat Med. 1997;3:797–801.CrossRefGoogle Scholar
  7. 7.
    Sárdy M, Kárpáti S, Merkl B, Paulsson M, Smyth N. Epidermal transglutaminase (TGase3) is the autoantigen of dermatitis herpetiformis. J Exp Med. 2002;195:747–57.CrossRefGoogle Scholar
  8. 8.
    Hadjivassiliou M, Aeschlimann P, Strigun A, Sanders DS, Woodroofe N, Aeschlimann D. Autoantibodies in gluten ataxia recognise a novel neuronal transglutaminase. Ann Neurol. 2008;64:332–43.CrossRefGoogle Scholar
  9. 9.
    Hadjivassiliou M, Sanders DS, Grunewald RA, Woodroofe N, Boscolo S, Aeschlimann D. Gluten sensitivity: from gut to brain. Lancet Neurol. 2010;9:318–30.CrossRefGoogle Scholar
  10. 10.
    Hadjivassiliou M, Grunewald RA, Sanders DS, et al. The significance of low titre antigliadin antibodies in the diagnosis of gluten ataxia. Nutrients. 2018;10:1444. Scholar
  11. 11.
    Hadjivassiliou M, Aeschlimann P, Sanders DS, et al. Transglutaminase 6 antibodies in the diagnosis of gluten ataxia. Neurology. 2013;80:1–6.CrossRefGoogle Scholar
  12. 12.
    Hadjivassiliou M, Sanders DS, Aeschlimann D. The neuroimmunology of gluten intolerance. In: Constantinescu C, et al., editors. Neuro-immuno-gastroenterology: Springer; 2016. Springer. International Publishing SwitzerlandGoogle Scholar
  13. 13.
    Bürk K, Melms A, Schulz JB, Dichgans J. Effectiveness of intravenous immunoglobulin therapy in cerebellar ataxia associated with gluten sensitivity. Ann Neurol. 2001;50:827–8.CrossRefGoogle Scholar
  14. 14.
    Souayah N, Chin RL, Brannagan TH, et al. Effect of intravenous immunoglobulin on cerebellar ataxia and neuropathic pain associated with celiac disease. Eur J Neurol. 2008;15:1300–3.CrossRefGoogle Scholar
  15. 15.
    Nanri K, Okita M, Takeguchi M, et al. Intravenous immunoglobulin therapy for autoantibody-positive cerebellar ataxia. Intern Med. 2009;48:783–90.CrossRefGoogle Scholar
  16. 16.
    Hadjivassiliou M, Davies-Jones GAB, Sanders DS, Grunewald RA. Dietary treatment of gluten ataxia. J Neurol Neurosurg Psychiatry. 2003;74(9):1221–4.CrossRefGoogle Scholar
  17. 17.
    Hadjivassiliou M, Rao DG, Grunewald RA, et al. Neurological dysfunction in coeliac disease and non-coeliac gluten sensitivity. Am J Gastroenterol. 2016;111:561. Scholar
  18. 18.
    Kerr DIB, Ong J. GABA receptors. Pharmacol Ther. 1995;67:187–246.CrossRefGoogle Scholar
  19. 19.
    Solimena M, Piccolo G, Martino G. Autoantibodies directed against gabaminergic nerve terminals in a patient with idiopathic late-onset cerebellar ataxia and type 1 diabetes mellitus. Clin Neuropathol. 1998;7.(Suppl:211.Google Scholar
  20. 20.
    Ellis TM, Atkinson MA. The clinical significance of an autoimmune response against glutamic acid decarboxylase. Nat Med. 1996;2:148–53.CrossRefGoogle Scholar
  21. 21.
    Honnorat J, Saiz A, Giometto B, et al. Cerebellar ataxia with antiglutamic acid decarboxylase antibodies. Arch Neurol. 2001;58:225–30.CrossRefGoogle Scholar
  22. 22.
    Mitoma H, Manto M, Hampe CS. Pathogenic roles of glutamic acid decarboxylase 65 autoantibodies in cerebellar ataxias. J Immunol Res. 2017; Scholar
  23. 23.
    Manto M, Mitoma H, Hampe CS. Anti-gad antibodies and the cerebellum: where do we stand? Cerebellum. 2018;
  24. 24.
    Arino H, Gresa-Arribas N, Blanco Y, et al. Cerebellar ataxia and glutamic acid decarboxylase antibodies; immune profile and long-term effect of immunotherapy. JAMA Neurol. 2014;71(8):1009–16.CrossRefGoogle Scholar
  25. 25.
    Mitoma H, Hadjivassiliou M, Honnorat J. Guidelines for treatment of immune-mediated ataxias. Cerebellum Ataxias. 2015;2:14.CrossRefGoogle Scholar
  26. 26.
    Hadjivassiliou M, Boscolo S, Tongiorgi E, et al. Cerebellar ataxia as a possible organ specific autoimmune disease. Mov Disord. 2008;23(10):1270–377.CrossRefGoogle Scholar
  27. 27.
    Mitoma H, Adhikari K, Aeschlimann D, et al. Consensus paper: neuroimmune mechanisms of cerebellar ataxia. Cerebellum. 2015;15:213. Scholar
  28. 28.
    Takeguchi M, Nanri K, Okita M, et al. Efficacy of intravenous immunoglobulin for slowly progressive cerebellar atrophy. Rinsho Shinkeigaku. 2006;46:467–74.PubMedGoogle Scholar
  29. 29.
    Jones AL, Flanagan EP, Pittock SJ, et al. Responses to and outcomes of treatment of autoimmune cerebellar ataxia in adults. JAMA Neurol. 2015;72:1304–12.CrossRefGoogle Scholar
  30. 30.
    Dalmau J, Rosenfield MR. Lancet Neurol. 2008;7:327–40.CrossRefGoogle Scholar
  31. 31.
    Hadjivassiliou M, Currie S, Hoggard N. MR spectroscopy in paraneoplastic cerebellar degeneration. J Neuroradiol. 2013;40:310. Scholar
  32. 32.
    Graus F, Dalmau J. Autoantibodies and neuronal autoimmune disorders of the CNS. J Neurol Sci. 2010;257:509–17.CrossRefGoogle Scholar
  33. 33.
    Albert ML, Austin LM, Darnell RB. Detection and treatment of activated T cells in cerebrospinal fluid of patients with paraneoplastic cerebellar degeneration. Ann Neurol. 2010;47:9–17.CrossRefGoogle Scholar
  34. 34.
    Hadjivassiliou M, Alder SJ, Van Beek EJR, et al. PET scan in clinically suspected paraneoplastic neurological syndromes: a six year prospective study in a regional neuroscience unit. Acta Neurol Scand. 2009;119:186–93.CrossRefGoogle Scholar
  35. 35.
    Pang KK, De Sousa C, Lang B, et al. A prospective study of the presentation and management of dancing eye syndrome/opsoclonus myoclonus syndrome in the UK. Eur J Paediatr Neurol. 2009;14:156–61.CrossRefGoogle Scholar
  36. 36.
    Blackburn DJ, Forbes M, Unwin Z, Hoggard N, Hadjivassiliou M, Sarrigiannis PG. Exaggerated startle in post-infectious opsoclonus myoclonus syndrome. Clin Neurophysiol. 2018;129:1372–3.CrossRefGoogle Scholar
  37. 37.
    Deconinck N, Scaillon M, Segers V, et al. Opsoclonus-myoclonus associated with celiac disease. Pediatr Neurol. 2006;34:312–4.CrossRefGoogle Scholar
  38. 38.
    Bataller L, Graus F, Saiz A, Vilchez JJ. Clinical outcome in adult onset idiopathic or paraneoplastic opsoclonus-myoclonus. Brain. 2001;124:437–43.CrossRefGoogle Scholar
  39. 39.
    Pranzatelli MR, Travelstead BS, Tate ED, et al. B and T-cell markers in opsoclonus-myoclonus syndrome. Neurology. 2004;62:1526–32.CrossRefGoogle Scholar
  40. 40.
    Pranzatelli MR, Tate ED, Swan JA, et al. B cell depletion therapy for new-onset opsoclonus myolconus. Mov Disord. 2010;25:238–42.CrossRefGoogle Scholar
  41. 41.
    Boronat A, Gelfand JM, Gresha-Arribas N, et al. Encephalitis and antibodies to DPPX, a subunit of Kv4.2 potassium channels. Ann Neurol. 2013;73:120–8.CrossRefGoogle Scholar
  42. 42.
    Balint B, Jarius S, Nagel S, et al. Progressive encephalomyelitis with rigidity and myoclonus: a new variant with DPPX antibodies. Neurology. 2014;82:1521–152869.CrossRefGoogle Scholar
  43. 43.
    Tobin WO, Lennon VA, Komorowski L, et al. DPPX potassium channel antibody; frequency, clinical accompaniments and outcomes in 20 patients. Neurology. 2014;83:1797–803.CrossRefGoogle Scholar
  44. 44.
    Zis P, Rao DG, Hoggard N, et al. Anti-MAG associated cerbellar ataxia and response to rituximab. J Neurol. 2018;265:115–8.CrossRefGoogle Scholar
  45. 45.
    Pittock SJ, Debruyne J, Krecke KN, et al. Chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS). Brain. 2010;133:2626–34.CrossRefGoogle Scholar
  46. 46.
    Dudesek A, Rimmele E, Tesar S, et al. CLIPPERS: chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids. Review of an increasingly recognized entity within the spectrum of inflammatory central nervous system disorders. Clin Exp Immunol. 2014;175:385–96.CrossRefGoogle Scholar
  47. 47.
    Shiboski SC, Shiboski CH, Criswell LA, et al. American College of Rheumatology Classification Criteria for Sjogren’s syndrome: a data-driven, expert consensus approach in the Sjogren’s International Collaborative Clinical Alliance Cohort. Arthritis Care Res. 2012;64:475–87.CrossRefGoogle Scholar
  48. 48.
    Alexander GE, Stevens MB, Provost TT, et al. Sjogren’s syndrome: central nervous system manifestations. Neurology. 1981;31:1391–6.CrossRefGoogle Scholar
  49. 49.
    Alexander EL, Malinow K, Lejewski JE, et al. Primary Sjogren’s syndrome with central nervous system disease mimicking multiple sclerosis. Ann Intern Med. 1986;104:323–30.CrossRefGoogle Scholar
  50. 50.
    Mori K, Lijima M, Koike H, et al. The wide spectrum of clinical manifestations in Sjogren’s syndrome-associated neuropathy. Brain. 2005;128:2518–34.CrossRefGoogle Scholar
  51. 51.
    Attwood W, Poser CM. Neurologic complications of Sjogren’s syndrome. Neurology. 1961;11:1034–41.CrossRefGoogle Scholar
  52. 52.
    Yang H, Sun Y, Zhao L, Zhang X, Zhang F. Cerebellar involvement in patients with primary Sjogren’s syndrome: diagnosis and treatment. Clin Rheumatol. 2018;37:1207–13.CrossRefGoogle Scholar
  53. 53.
    Alexander EL, Ranzenbach MR, Kumar AJ, et al. Anti-Ro autoantibodies in central nervous system disease associated with Sjogren’s syndrome: clinical, neuroimaging and angiographic correlates. Neurology. 1994;44:899–908.CrossRefGoogle Scholar
  54. 54.
    Casciato S, Mascia A, Quarato PP, D’Aniello A, Scoppetta C, Di Gennaro G. Subacute cerebellar ataxia as presenting symptom of systemic lupus erythematosus. Eur Rev Med Pharmacol Sci. 2018;22(21):7401–3.PubMedGoogle Scholar
  55. 55.
    Manto MU, Rondeaux P, Jacquy J, Hildebrand JG. Subacute pancerebellar syndrome associated with systemic lupus erythematosus. Clin Neurol Neurosurg. 1996;98(2):157–60.CrossRefGoogle Scholar
  56. 56.
    Chattopadhyay P, Dhua D, Philips CA, Saha S. Acute cerebellar ataxia in lupus. Lupus. 2011;20(12):1312–5.CrossRefGoogle Scholar
  57. 57.
    Mitoma H, Manto M, Hampe CS. Time is cerebellum. Cerebellum. 2018;17:387–91.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Marios Hadjivassiliou
    • 1
    Email author
  • Hiroshi Mitoma
    • 2
  • Mario Manto
    • 3
    • 4
  1. 1.Academic Department of Neurosciences, Royal Hallamshire HospitalSheffieldUK
  2. 2.Medical Education Promotion CenterTokyo Medical UniversityTokyoJapan
  3. 3.Department of Neurology, CHU-CharleroiCharleroiBelgium
  4. 4.Department of NeurosciencesUniversity of MonsMonsBelgium

Personalised recommendations