Description and Properties of Curve-Based Monotone Functions

  • Mikel Sesma-SaraEmail author
  • Laura De Miguel
  • Antonio Francisco Roldán López de Hierro
  • Jana Špirková
  • Radko Mesiar
  • Humberto Bustince
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 981)


Curve-based monotonicity is one of the lately introduced relaxations of monotonicity. As directional monotonicity regards monotonicity along fixed rays, which are given by real vectors, curve-based monotonicity studies the increase of functions with respect to a general curve \(\alpha \). In this work we study some theoretical properties of this type of monotonicity and we relate this concept with previous relaxations of monotonicity.


Curve-based monotonicity Weak monotonicity Directional monotonicity Aggregation function 



This work is supported by the research group FQM268 of Junta de Andalucía, by the project TIN2016-77356-P (AEI/FEDER, UE), by the Slovak Scientific Grant Agency VEGA no. 1/0093/17 Identification of risk factors and their impact on products of the insurance and savings schemes, by Slovak grant APVV-14-0013, and by Czech Project LQ1602 “IT4Innovations excellence in science”.


  1. 1.
    Beliakov, G., Calvo, T., Wilkin, T.: Three types of monotonicity of averaging functions. Knowl.-Based Syst. 72, 114–122 (2014). Scholar
  2. 2.
    Beliakov, G., Špirková, J.: Weak monotonicity of Lehmer and Gini means. Fuzzy Sets Syst. 299, 26–40 (2016). Scholar
  3. 3.
    Beliakov, G., Calvo, T., Wilkin, T.: On the weak monotonicity of Gini means and other mixture functions. Inf. Sci. 300, 70–84 (2015). Scholar
  4. 4.
    Bustince, H., Barrenechea, E., Sesma-Sara, M., Lafuente, J., Dimuro, G.P., Mesiar, R., Kolesárová, A.: Ordered directionally monotone functions. Justification and application. IEEE Trans. Fuzzy Syst. 26(4), 2237–2250 (2018). Scholar
  5. 5.
    Bustince, H., Fernandez, J., Kolesárová, A., Mesiar, R.: Directional monotonicity of fusion functions. Eur. J. Oper. Res. 244(1), 300–308 (2015). Scholar
  6. 6.
    Elkano, M., Sanz, J.A., Galar, M., Pekala, B., Bentkowska, U., Bustince, H.: Composition of interval-valued fuzzy relations using aggregation functions. Inf. Sci. 369, 690–703 (2016). Scholar
  7. 7.
    Gagolewski, M.: Data fusion: theory, methods, and applications. Institute of Computer Science Polish Academy of Sciences (2015)Google Scholar
  8. 8.
    García-Lapresta, J., Martínez-Panero, M.: Positional voting rules generated by aggregation functions and the role of duplication. Int. J. Intell. Syst. 32(9), 926–946 (2017). Scholar
  9. 9.
    Roldán López de Hierro, A.F., Sesma-Sara, M., Špirková, J., Lafuente, J., Pradera, A., Mesiar, R., Bustince, H.: Curve-based monotonicity: a generalization of directional monotonicity. Int. J. General Syst. (2019).
  10. 10.
    Lucca, G., Sanz, J., Dimuro, G., Bedregal, B., Asiain, M.J., Elkano, M., Bustince, H.: CC-integrals: Choquet-like copula-based aggregation functions and its application in fuzzy rule-based classification systems. Knowl.-Based Syst. 119, 32–43 (2017). Scholar
  11. 11.
    Lucca, G., Sanz, J.A., Dimuro, G.P., Bedregal, B., Mesiar, R., Kolesárová, A., Bustince, H.: Preaggregation functions: construction and an application. IEEE Trans. Fuzzy Syst. 24(2), 260–272 (2016). Scholar
  12. 12.
    Lucca, G., Sanz, J.A., Dimuro, G.P., Bedregal, B., Bustince, H., Mesiar, R.: CF-integrals: a new family of pre-aggregation functions with application to fuzzy rule-based classification systems. Inf. Sci. 435, 94–110 (2018). Scholar
  13. 13.
    Mesiar, R., Kolesárová, A., Stupňanová, A.: Quo vadis aggregation? Int. J. General Syst. 47(2), 97–117 (2018). Scholar
  14. 14.
    Paternain, D., Fernandez, J., Bustince, H., Mesiar, R., Beliakov, G.: Construction of image reduction operators using averaging aggregation functions. Fuzzy Sets Syst. 261, 87–111 (2015). Scholar
  15. 15.
    Rousseeuw, P.J., Leroy, A.M.: Robust Regression and Outlier Detection, vol. 589. Wiley, Hoboken (2005)zbMATHGoogle Scholar
  16. 16.
    Sesma-Sara, M., Lafuente, J., Roldán, A., Mesiar, R., Bustince, H.: Strengthened ordered directionally monotone functions. Links between the different notions of monotonicity. Fuzzy Sets Syst. 357, 151–172 (2019). Scholar
  17. 17.
    Sesma-Sara, M., Bustince, H., Barrenechea, E., Lafuente, J., Kolesárová, A., Mesiar, R.: Edge detection based on ordered directionally monotone functions. In: Advances in Fuzzy Logic and Technology 2017, pp. 301–307. Springer (2017).
  18. 18.
    Sesma-Sara, M., Mesiar, R., Bustince, H.: Weak and directional monotonicity of functions on Riesz spaces to fuse uncertain data. Fuzzy Sets Syst. (in press).
  19. 19.
    Wilkin, T., Beliakov, G.: Weakly monotonic averaging functions. Int. J. Int. Syst. 30(2), 144–169 (2015). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mikel Sesma-Sara
    • 1
    • 2
    Email author
  • Laura De Miguel
    • 1
    • 2
  • Antonio Francisco Roldán López de Hierro
    • 3
  • Jana Špirková
    • 4
  • Radko Mesiar
    • 5
    • 6
  • Humberto Bustince
    • 1
    • 2
  1. 1.Public University of NavarraPamplonaSpain
  2. 2.Institute of Smart Cities (UPNA)PamplonaSpain
  3. 3.University of GranadaGranadaSpain
  4. 4.Matej Bel UniversityBanská BystricaSlovakia
  5. 5.Slovak University of Technology in BratislavaBratislavaSlovakia
  6. 6.University of OstravaOstravaCzech Republic

Personalised recommendations