Skip to main content

An Invitation to Noncommutative Algebra

  • Chapter
  • First Online:

Part of the book series: Association for Women in Mathematics Series ((AWMS,volume 18))

Abstract

This is a brief introduction to the world of Noncommutative Algebra aimed at advanced undergraduate and beginning graduate students.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In categorical language, this is the question of whether the category of H-modules (or of representations of H) has a monoidal structure.

  2. 2.

    In this case, the category of H-modules is a rigid monoidal category.

  3. 3.

    For more settings of quantum symmetry, see, e.g. [63, Chapter 11] for a categorical framework.

References

  1. Artin, M., Schelter, W., and Tate, J.: Quantum deformations of GLn. Comm. Pure Appl. Math. 44, no. 4–5, 879–895 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  2. Axler, S.: Linear Algebra Done Right. Third edition. Undergraduate Texts in Mathematics, Springer International Publishing (2015).

    MATH  Google Scholar 

  3. Baez, J. C.: The octonions. Bull. Amer. Math. Soc. (N.S.) 39, no. 2, 145–205 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  4. Bayley, M.: Alice’s adventures in algebra: Wonderland solved. New Scientist Magazine. December 16, 2009. https://www.newscientist.com/article/mg20427391-600-alices-adventures-in-algebra-wonderland-solved/. Cited July 26, 2018.

  5. Baylis, W. E.: Clifford (Geometric) Algebras: with applications to physics, mathematics, and engineering. Birkhäuser Boston, Boston (1996).

    Book  MATH  Google Scholar 

  6. Berenstein, D., Jejjala, V., and Leigh, R. G.: Marginal and relevant deformations of N=4 field theories and non-commutative moduli spaces of vacua. Nuclear Phys. B 589, no. 1–2, 196–248 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  7. Born, M. and Jordan, P.: Zur Quantenmechanik. Z. Phys. 34, 858–888 (1925).

    Article  Google Scholar 

  8. Bott, R. and Milnor, J.: On the parallelizability of the spheres. Bull. Amer. Math. Soc. 64, 87–89 (1958).

    Article  MathSciNet  MATH  Google Scholar 

  9. Bouwknegt, P. and Schoutens, K.: \(\mathscr {W}\)symmetry in conformal field theory. Phys. Rep. 223, no. 4, 183–276 (1993).

    Google Scholar 

  10. Boyette, J., Leyk, M., Talley, J., Plunkett, T., and Sipe, K.: Explicit representation theory of the quantum Weyl algebra at roots of 1. Comm. Algebra 28, no. 11, 5269–5274 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  11. Brown, K. A. and Goodearl, K. R. Lectures on algebraic quantum groups. Advanced Courses in Mathematics. CRM Barcelona. Birkhäuser-Verlag, Basel (2002).

    Book  MATH  Google Scholar 

  12. Cohn, P. M.: Further Algebra and Applications. SpringerLink: Bücher, Springer, London (2011).

    Google Scholar 

  13. Connes, A. and Dubois-Violette, M.: Yang-Mills algebra. Lett. Math. Phys. 61, no. 2, 149–158 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  14. Conrad, K.: Quaternion algebras. Available at http://www.math.uconn.edu/~kconrad/blurbs/ringtheory/quaternionalg.pdf. Cited July 28, 2018.

  15. Conrad, K.: Tensor algebras. Available at http://www.math.uconn.edu/~kconrad/blurbs/linmultialg/tensorprod.pdf. Cited August 6, 2018.

  16. Coutinho, S.C.: A primer of algebraic D-modules. Vol. 33. Cambridge University Press, Cambridge (1995).

    Book  MATH  Google Scholar 

  17. Covolo, T. and Michel, J.-P.: Determinants over graded-commutative algebras, a categorical viewpoint. Enseign. Math. 62, no. 3–4, 361–420 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  18. Cuadra, J. and Etingof, P.: Finite dimensional Hopf actions on central division algebras. Int. Math. Res. Not. 2017, no. 5, 1562–1577 (2016).

    MathSciNet  MATH  Google Scholar 

  19. Dickson, L. E.: On quaternions and their generalization and the history of the eight square theorem. Ann. of Math. (2) 20, no. 3, 155–171 (1919).

    Article  MathSciNet  MATH  Google Scholar 

  20. Dirac, P. A. M.: The fundamental equations of quantum mechanics. Proc. Roy. Soc. A 109, no. 752, 642–653 (1925).

    Article  MATH  Google Scholar 

  21. Doi, Y. and Takeuchi, M.: Quaternion algebras and Hopf crossed products. Comm. Algebra 23, no. 9, 3291–3325 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  22. Drinfel’d, V. G.: Quantum groups. Proceedings of the International Congress of Mathematicians 986, Vol. 1, 798–820, AMS (1987).

    Google Scholar 

  23. Etingof, P., Golberg, O., Hensel, S., Liu, T., Schwendner, A., Vaintrob, D., and Yudovina, E.: Introduction to representation theory. With historical interludes by Slava Gerovitch. Student Mathematical Library, 59. American Mathematical Society, Providence (2011).

    Google Scholar 

  24. Fenn, R. and Turaev, V.: Weyl algebras and knots. J. Geom. Phys. 57, no. 5, 1313–1324, (2007).

    Article  MathSciNet  MATH  Google Scholar 

  25. Franco, S., Hanany, A., Vegh, D., Wecht, B., and Kennaway, K.: Brane dimers and quiver gauge theories. J. High Energy Phys., no. 1, (2006).

    Google Scholar 

  26. Frobenius, G.: Über lineare Substitutionen und bilineare Formen. J. Reine Angew. Math. 84, 1–63 (1878).

    MathSciNet  MATH  Google Scholar 

  27. Gerstenhaber, M. and Giaquinto, A.: Deformations associated with rigid algebras. J. Homotopy Relat. Struct. 10, no. 3, 437–458 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  28. Giaquinto, A. and Zhang, J. J.: Quantum Weyl algebras. J. Algebra 176, no. 3, 861–881 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  29. Hamilton, W. R.. Lectures on quaternions. Hodges and Smith (1853).

    Google Scholar 

  30. Hamilton, W. R.: The mathematical papers of Sir William Rowan Hamilton. Vol. III: Algebra. Edited by H. Halberstam and R. E. Ingram. Cunningham Memoir No. XV. Cambridge University Press, London-New York (1967).

    MATH  Google Scholar 

  31. Heider, B. and Wang, L.: Irreducible representations of the quantum Weyl algebra at roots of unity given by matrices. Comm. Algebra 42, no. 5, 2156–2162 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  32. Heisenberg, W.: Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. Z. Phys. 33, 879–893 (1925).

    Article  MATH  Google Scholar 

  33. Heisenberg, W.: Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. 43, 172–198 (1927).

    Article  MATH  Google Scholar 

  34. Hentschel, A. M. and Hentschel, K.: Physics and National Socialism: An Anthology of Primary Sources. Modern Birkhäuser Classics, Springer, (2011).

    MATH  Google Scholar 

  35. Hopf, H.: Ueber die Topologie der Gruppen-Mannifaltigkeiten und ihrer Verallgemeinerungen, Ann. Math. 42, 22–52 (1941).

    Article  MathSciNet  MATH  Google Scholar 

  36. Jimbo, M.: A q-difference analogue of \(U(\mathfrak {g})\) and the Yang-Baxter equation. Lett. Math. Phys. 10, no. 1, 63–69 (1985).

    Google Scholar 

  37. Jing, N. and Zhang, J.: Quantum Weyl algebras and deformations of \(U(\mathfrak {g})\). Pacific J. Math. 171, no. 2, 437–454 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  38. Joni, S. and Rota, G.-C.: Coalgebras and bialgebras in combinatorics, Stud. Appl. Math. 61, 93–139 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  39. Jordan, D.: Quantized multiplicative quiver varieties. Adv. Math. 250, 420–466 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  40. Joyal, A. and Street, R.: Braided tensor categories. Adv. Math. 102, no. 1, 20–78 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  41. Kassel, C.: Quantum groups. Graduate Texts in Mathematics 155. Springer-Verlag, New York (1995).

    Book  MATH  Google Scholar 

  42. Kervaire, M.: Non-parallelizability of the n sphere for n > 7, Proc. Nat. Acad. Sci. USA 44, 280–283 (1958).

    Article  MathSciNet  MATH  Google Scholar 

  43. Kleiner, I.: The Evolution of Group Theory: A Brief Survey. Math. Mag. 59, no. 4, 195–215 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  44. Kuipers, J. B.: Quaternions and rotation sequences. A primer with applications to orbits, aerospace, and virtual reality. Princeton University Press, Princeton, NJ (1999).

    Google Scholar 

  45. Kuipers, J. B.: Quaternions and rotation sequences. Geometry, integrability and quantization (Varna, 1999), 127–143, Coral Press Sci. Publ., Sofia (2000).

    Google Scholar 

  46. Lam, T. Y.: A first course in noncommutative rings. Second edition. Graduate Texts in Mathematics, 131. Springer-Verlag, New York (2001).

    Book  MATH  Google Scholar 

  47. Lam, T. Y. Introduction to quadratic forms over fields. Graduate Studies in Mathematics 67. American Mathematical Society, Providence (2005).

    Google Scholar 

  48. Laugwitz, R.: Comodule Algebras and 2-Cocycles over the (Braided) Drinfeld Double. Available at https://arxiv.org/pdf/1708.02641.pdf. Cited July 29, 2018.

  49. Lewis, D.: Quaternion algebras and the algebraic legacy of Hamilton’s quaternions. Irish Math. Soc. Bull. no. 57, 41–64 (2006).

    MathSciNet  MATH  Google Scholar 

  50. Lorenz, M.: A Tour of Representation Theory (preliminary version). Available at https://www.math.temple.edu/~lorenz/ToR.pdf. Cited July 25, 2018.

  51. Lusztig, G.: Introduction to quantum groups. Progress in Mathematics, 110. Birkh\(\ddot {a}\)user Boston, Inc., Boston (1993).

    Google Scholar 

  52. Macfarlane, A.: Hyperbolic quaternions. Proc. Roy. Soc. Edinburgh 23, 169–180 (1902).

    Article  Google Scholar 

  53. Maclachlan, C. and Reid, A. W.: The arithmetic of hyperbolic 3-manifolds. Graduate Texts in Mathematics, 219. Springer-Verlag, New York (2003).

    Chapter  MATH  Google Scholar 

  54. Manin, Y. I.: Quantum groups and noncommutative geometry. Université de Montréal Centre de Recherches Mathématiques, Montreal (1988).

    MATH  Google Scholar 

  55. May, K. O.: Classroom Notes: The Impossibility of a Division Algebra of Vectors in Three Dimensional Space. Amer. Math. Monthly 73, no. 3, 289–291 (1966).

    MathSciNet  Google Scholar 

  56. Miyake, T.: Modular forms. Springer Monographs in Mathematics. Springer-Verlag, Berlin (2006).

    Google Scholar 

  57. Montgomery, S.: Hopf algebras and their actions on rings. No. 82. American Mathematical Soc. (1993).

    Google Scholar 

  58. Morier-Genoud, S. and Ovsienko V.: Well, papa, can you multiply triplets? Math. Intelligencer 31, no. 4, 1–2 (2009).

    Article  MathSciNet  Google Scholar 

  59. Morier-Genoud, S. and Ovsienko, V.: Simple graded commutative algebras. J. Algebra 323, no. 6, 1649–1664 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  60. National Public Radio: Weekend Edition Saturday. The Mad Hatter’s Secret Ingredient: Math. March 13, 2010. https://www.npr.org/templates/story/story.php?storyId=124632317. Cited July 26, 2018.

  61. Onsager, L.: Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. 65, no. 2, 117–149 (1944).

    MathSciNet  MATH  Google Scholar 

  62. Palais, R. S.: The classification of real division algebras. Amer. Math. Monthly 75, 366–368 (1968).

    MathSciNet  MATH  Google Scholar 

  63. Radford, D. E.: Hopf algebras. Series on Knots and Everything 49. World Scientific Publishing Co. Pte. Ltd., Hackensack (2012).

    Google Scholar 

  64. Sklyanin, E. K.: Some algebraic structures connected with the Yang-Baxter equation. Funktsional. Anal. i Prilozhen. 16, no. 4, 27–34 (1982).

    MathSciNet  Google Scholar 

  65. Spiridonov, V.: Coherent states of the q-Weyl algebra. Lett. Math. Phys. 35, no. 2, 179–185 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  66. Van Oystaeyen, F. and Zhang, Y.: The Brauer group of Sweedler’s Hopf algebra H 4. Proc. Amer. Math. Soc. 129, no. 2, 371–380 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  67. van der Waerden, B. L.: Hamilton’s discovery of quaternions. Translated from the German by F. V. Pohle. Math. Mag. 49, no. 5, 227–234 (1976).

    MathSciNet  MATH  Google Scholar 

  68. van der Waerden, B. L.: Sources of Quantum Mechanics. Dover Books on Physics. Dover (2007).

    MATH  Google Scholar 

  69. Vignéras, M.-F.: Arithmétique des algèbres de quaternions. Lecture Notes in Mathematics, 800. Springer, Berlin (1980).

    Chapter  MATH  Google Scholar 

  70. Wikipedia contributors: Cayley-Dickson construction. Wikipedia, The Free Encyclopedia. Wikipedia, The Free Encyclopedia, Cited July 26, 2018.

    Google Scholar 

  71. Zorn, M.: Theorie der alternativen Ringe, Abh. Math. Sem. Univ. Hamburg 8, 123–147 (1930).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

C. Walton is partially supported by the US National Science Foundation with grants #DMS-1663775 and 1903192, and with a research fellowship from the Alfred P. Sloan foundation. The author thanks the anonymous referees and Gene Abrams for their valuable feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chelsea Walton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s) and the Association for Women in Mathematics

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Walton, C. (2019). An Invitation to Noncommutative Algebra. In: D'Agostino, S., Bryant, S., Buchmann, A., Guinn, M., Harris, L. (eds) A Celebration of the EDGE Program’s Impact on the Mathematics Community and Beyond . Association for Women in Mathematics Series, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-030-19486-4_23

Download citation

Publish with us

Policies and ethics