Advertisement

Biodegradable Plastic Mulch Films for Sustainable Specialty Crop Production

  • Douglas G. HayesEmail author
  • Marife B. Anunciado
  • Jennifer M. DeBruyn
  • Sreejata Bandopadhyay
  • Sean Schaeffer
  • Marie English
  • Shuresh Ghimire
  • Carol Miles
  • Markus Flury
  • Henry Y. Sintim
Chapter

Abstract

Plastic mulch films are employed in the production of vegetables and other specialty crops worldwide due to the benefits they provide, such as reduction of weeds and water loss by evaporation, and control of soil temperature. The benefits can lead to better product quality and yield, and to a more efficient utilization of agricultural inputs such as water. Unfortunately, polyethylene (PE), the most commonly employed constituent of plastic mulches, is poorly biodegradable, thereby requiring the mulch’s’ expensive and laborious retrieval after harvest. The opportunities for recycling and landfilling of PE mulches are not readily available or are impractical. Residual PE fragments are readily dispersed in soil-related ecosystems and watersheds, where they can harm micro- and macro-organisms. Biodegradable plastic mulches (BDMs) have been developed to address the disposal-related deficiencies. Although the purchase costs of BDMs are over two-fold higher than PE mulches, BDMs are inexpensively plowed into the soil after harvest. Despite the environmental benefits of replacing PE plastic mulches with BDMs, and potential savings of labor costs at harvest, the long-term impact of multiyear BDM employment on soil health and specialty crop productivity is still a concern. This chapter provides a review of BDMs in specialty crop production, including commonly employed polymeric constituents. The authors’ recent interdisciplinary research on the long-term impacts of BDMs on specialty crop production and soil fertility will also be discussed.

Keywords

Agro-food industry Agroindustrial inputs Plasticulture Polymers 

Notes

Acknowledgements

The authors acknowledge financial support for their research pertaining to biodegradable plastic mulches from the USDA Specialty Crops Research Initiative program (Award 2014-51181-22382) and NIFA Hatch projects 1017286 and 1014527 for Carol Miles and Markus Flury, respectively.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Adeleye, A. I., Patel, D., Niyogi, D., & Saha, B. (2014). Efficient and greener synthesis of propylene carbonate from carbon dioxide and propylene oxide. Industrial & Engineering Chemistry Research, 53(49), 18647–18657.  https://doi.org/10.1021/ie500345z.CrossRefGoogle Scholar
  2. Alimi, O. S., Farner Budarz, J., Hernandez, L. M., & Tufenkji, N. (2018). Microplastics and nanoplastics in aquatic environments: Aggregation, deposition, and enhanced contaminant transport. Environmental Science & Technology, 52(4), 1704–1724.  https://doi.org/10.1021/acs.est.7b05559.CrossRefGoogle Scholar
  3. Andersson, S. R., Hakkarainen, M., & Albertsson, A.-C. (2010). Tuning the polylactide hydrolysis rate by plasticizer architecture and hydrophilicity without introducing new migrants. Biomacromolecules, 11(12), 3617–3623.  https://doi.org/10.1021/bm101075p.CrossRefPubMedGoogle Scholar
  4. ASTM International. (2012a). Standard specification for labeling of plastics designed to be aerobically composted in municipal or industrial facilities (ASTM D6400). West Conshohocken.Google Scholar
  5. ASTM International. (2012b). Standard test method for determining aerobic biodegradation in soil of plastic materials or residual plastic materials after composting (ASTM D5988). West Conshohocken.Google Scholar
  6. ASTM International. (2012c). Standard test methods for determining the biobased content of solid, liquid, and gaseous samples using radiocarbon analysis (ASTM D6866). West Conshohocken.Google Scholar
  7. Baldock, J. A., & Skjemstad, J. O. (2000). Role of the soil matrix and minerals in protecting natural organic materials against biological attack. Organic Geochemistry, 31(7), 697–710.  https://doi.org/10.1016/S0146-6380(00)00049-8.CrossRefGoogle Scholar
  8. Bandopadhyay, S., Martin-Closas, L., Pelacho, A. M., & DeBruyn, J. M. (2018). Biodegradable plastic mulch films: Impacts on soil microbial communities and ecosystem functions. Frontiers in Microbiology, 9, 819.  https://doi.org/10.3389/fmicb.2018.00819.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Barragan, D. H., Pelacho, A. M., & Martin-Closas, L. (2016). Degradation of agricultural biodegradable plastics in the soil under laboratory conditions. Soil Research, 54(2), 216–224.  https://doi.org/10.1071/sr15034.CrossRefGoogle Scholar
  10. Brault, D., Stewart, K. A., & Jenni, S. (2002). Growth, development, and yield of head lettuce cultivated on paper and polyethylene mulch. HortScience, 37(1), 92–94.  https://doi.org/10.21273/hortsci.37.1.92.CrossRefGoogle Scholar
  11. Briassoulis, D. (2006). Mechanical behavior of biodegradable agricultural films under real field conditions. Polymer Degradation and Stability, 91(6), 1256–1272.  https://doi.org/10.1016/j.polymdegradstab.2005.09.016.CrossRefGoogle Scholar
  12. Briassoulis, D. (2007). Analysis of the mechanical and degradation performances of optimized agricultural biodegradable films. Polymer Degradation and Stability, 92(6), 1115–1132.  https://doi.org/10.1016/j.polymdegradstab.2007.01.024.CrossRefGoogle Scholar
  13. Briassoulis, D., & Dejean, C. (2010). Critical review of norms and standards for biodegradable agricultural plastics part I: Biodegradation in soil. Journal of Polymers and the Environment, 18(3), 384–400.  https://doi.org/10.1007/s10924-010-0168-1.CrossRefGoogle Scholar
  14. Briassoulis, D., Aristopoulou, A., Bonora, M., & Verlodt, I. (2004). Degradation characterisation of agricultural low-density polyethylene films. Biosystems Engineering, 88(2), 131–143.  https://doi.org/10.1016/j.biosystemseng.2004.02.010.CrossRefGoogle Scholar
  15. Briassoulis, D., Dejean, C., & Picuno, P. (2010). Critical review of norms and standards for biodegradable agricultural plastics part II: Composting. Journal of Polymers and the Environment, 18(3), 364–383.  https://doi.org/10.1007/s10924-010-0222-z.CrossRefGoogle Scholar
  16. Callister, W. D., & Rethwisch, D. G. (2015). Fundamentals of materials science and engineering: An integrated approach (4th ed.). Hoboken: Wiley.Google Scholar
  17. Chinaglia, S., Tosin, M., & Degli-Innocenti, F. (2018). Biodegradation rate of biodegradable plastics at molecular level. Polymer Degradation and Stability, 147, 237–244.  https://doi.org/10.1016/j.polymdegradstab.2017.12.011.CrossRefGoogle Scholar
  18. Cirujeda, A., Aibar, J., Anzalone, Á., Martín-Closas, L., Meco, R., Moreno, M. M., Pardo, A., Pelacho, A. M., Rojo, F., Royo-Esnal, A., Suso, M. L., & Zaragoza, C. (2012). Biodegradable mulch instead of polyethylene for weed control of processing tomato production. Agronomy for Sustainable Development, 32(4), 889–897.  https://doi.org/10.1007/s13593-012-0084-y.CrossRefGoogle Scholar
  19. Collias, D. I., Harris, A. M., Nagpal, V., Cottrell, I. W., & Schultheis, M. W. (2014). Biobased terephthalic acid technologies: A literature review. Industrial Biotechnology, 10(2), 91–105.  https://doi.org/10.1089/ind.2014.0002.CrossRefGoogle Scholar
  20. Coltelli, M.-B., Maggiore, I. D., Bertoldo, M., Signori, F., Bronco, S., & Ciardelli, F. (2008). Poly(lactic acid) properties as a consequence of poly(butylene adipate-co-terephthalate) blending and acetyl tributyl citrate plasticization. Journal of Applied Polymer Science, 110(2), 1250–1262.  https://doi.org/10.1002/app.28512.CrossRefGoogle Scholar
  21. Cowan, J. S., Miles, C., Andrews, P. K., & Inglis Debra, A. (2014). Biodegradable mulch performed comparable to polyethylene in high tunnel tomato (Solanum lycopersicum L.) production. Journal of the Science of Food and Agriculture, 94(9), 1854–1864.  https://doi.org/10.1002/jsfa.6504.CrossRefPubMedGoogle Scholar
  22. Cowan, J. S., Goldberger, J. R., Miles, C. A., & Inglis, D. A. (2015). Creating tactile space during a university extension field day event: The case of a sustainable agriculture innovation. Rural Sociology, 80(4), 456–482.  https://doi.org/10.1111/ruso.12073.CrossRefGoogle Scholar
  23. Cuello, J. P., Hwang, H. Y., Gutierrez, J., Kim, S. Y., & Kim, P. J. (2015). Impact of plastic film mulching on increasing greenhouse gas emissions in temperate upland soil during maize cultivation. Applied Soil Ecology, 91, 48–57.  https://doi.org/10.1016/j.apsoil.2015.02.007.CrossRefGoogle Scholar
  24. Davidson, E. A., Janssens, I. A. (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440(7081), 165–173. https://doi.org/10.1038/nature04514CrossRefGoogle Scholar
  25. Detyothin, S., Kathuria, A., Jaruwattanayon, W., Selke, S. E. M., & Auras, R. (2010). In R. Auras, L. T. Lim, S. E. M. Selke, & H. Tsuji (Eds.), Poly(lactic acid) blends in poly(Lactic Acid): Synthesis, structures, properties, processing, and applications (pp. 227–271). Hoboken: Wiley.  https://doi.org/10.1002/9780470649848.ch16.CrossRefGoogle Scholar
  26. Dharmalingam, S., Hayes, D. G., Wadsworth, L. C., Dunlap, R. N., DeBruyn, J. M., Lee, J., & Wszelaki, A. L. (2015). Soil degradation of polylactic acid/polyhydroxyalkanoate-based nonwoven mulches. Journal of Polymers and the Environment, 23(3), 302–315.  https://doi.org/10.1007/s10924-015-0716-9.CrossRefGoogle Scholar
  27. Domagała-Świątkiewicz, I., & Siwek, P. (2013). The effect of direct covering with biodegradable nonwoven film on the physical and chemical properties of soil. Polish Journal of Environmental Studies, 22(3), 667–674.Google Scholar
  28. Dufresne, A., Dupeyre, D., & Vignon, M. R. (2000). Cellulose microfibrils from potato tuber cells: Processing and characterization of starch–cellulose microfibril composites. Journal of Applied Polymer Science, 76(14), 2080–2092.  https://doi.org/10.1002/(sici)1097-4628(20000628)76:14<2080::aid-app12>3.0.co;2-u.CrossRefGoogle Scholar
  29. Elfehri Borchani, K., Carrot, C., & Jaziri, M. (2015). Biocomposites of alfa fibers dispersed in the mater-bi® type bioplastic: Morphology, mechanical and thermal properties. Composites Part A: Applied Science and Manufacturing, 78, 371–379.  https://doi.org/10.1016/j.compositesa.2015.08.023.CrossRefGoogle Scholar
  30. Emmert, E. M. (1957). Black polyethylene for mulching vegetables. Proceedings of the American Society for Horticultural Science, 69, 464–469.Google Scholar
  31. Erickson, B. E. (2015). Regulators and retailers raise pressure on phthalates. Chemical and Engineering News, 95(25), 11–15.Google Scholar
  32. European Commission. (2018). Report from the commission to the European Parliament and the council on the impact of the use of oxo-degradable plastic, including [Online]. Brussels: European Union. Available: http://ec.europa.eu/environment/circular-economy/pdf/oxo-plastics.pdf. Accessed 13 Feb 2019.
  33. European Committee for Standardization. (2018). EN 17033: Plastics-biodegradable mulch films for use in agriculture and horticulture- requirements and test methods. Brussels.Google Scholar
  34. Farmer, J., Zhang, B., Jin, X., Zhang, P., & Wang, J. (2017). Long-term effect of plastic film mulching and fertilization on bacterial communities in a brown soil revealed by high through-put sequencing. Archives of Agronomy and Soil Science, 63(2), 230–241.  https://doi.org/10.1080/03650340.2016.1193667.CrossRefGoogle Scholar
  35. Filippi, F., Magnani, G., Guerrini, S., & Ranghino, F. (2011). Agronomic evaluation of green biodegradable mulch on melon. Italian Journal of Agronomy, 6(2), 111–116.  https://doi.org/10.4081/ija.2011.e18.CrossRefGoogle Scholar
  36. Ghimire, S., Wszelaki, A. L., Moore, J. C., Inglis, D. A., & Miles, C. (2018). The use of biodegradable mulches in pie pumpkin crop production in two diverse climates. HortScience, 53(3), 288–294.  https://doi.org/10.21273/hortsci12630-17.CrossRefGoogle Scholar
  37. Ghosh, A. (2017). Phthalate puzzle. Resonance, 22(7), 691–696.  https://doi.org/10.1007/s12045-017-0512-z.CrossRefGoogle Scholar
  38. Goldberger, J. R., Jones, R. E., Miles, C. A., Wallace, R. W., & Inglis, D. A. (2013). Barriers and bridges to the adoption of biodegradable plastic mulches for US specialty crop production. Renewable Agriculture and Food Systems, 30(2), 143–153.  https://doi.org/10.1017/S1742170513000276.CrossRefGoogle Scholar
  39. Gutiérrez, T. J. (2018a). Are modified pumpkin flour/plum flour nanocomposite films biodegradable and compostable? Food Hydrocolloids, 83, 397–410.  https://doi.org/10.1016/j.foodhyd.2018.05.035.CrossRefGoogle Scholar
  40. Gutiérrez, T. J. (2018b). Chapter 9. Biodegradability and compostability of food nanopackaging materials. In: Composite materials for food packaging. Giuseppe Cirillo, Marek A. Kozlowski, and Umile Gianfranco Spizzirri (Eds). WILEY-Scrivener Publisher. EE.UU. ISBN: 978-1-119-16020-5. pp. 269-296. doi: https://doi.org/10.1002/9781119160243.ch9.CrossRefGoogle Scholar
  41. Gutiérrez, T. J., & Alvarez, V. A. (2017a). Eco-friendly films prepared from plantain flour/PCL blends under reactive extrusion conditions using zirconium octanoate as a catalyst. Carbohydrate Polymers, 178, 260–269.  https://doi.org/10.1016/j.carbpol.2017.09.026.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Gutiérrez, T. J., & Alvarez, V. A. (2017b). Data on physicochemical properties of active films derived from plantain flour/PCL blends developed under reactive extrusion conditions. Data in Brief, 15, 445–448.  https://doi.org/10.1016/j.dib.2017.09.071.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Gutiérrez, T. J., Toro-Márquez, L. A., Merino, D., & Mendieta, J. R. (2019). Hydrogen-bonding interactions and compostability of bionanocomposite films prepared from corn starch and nano-fillers with and without added Jamaica flower extract. Food Hydrocolloids, 89, 283–293.  https://doi.org/10.1016/j.foodhyd.2018.10.058.CrossRefGoogle Scholar
  44. Haapala, T., Palonen, P., Korpela, A., & Ahokas, J. (2014). Feasibility of paper mulches in crop production — A review. Agricultural and Food Science, 23(1), 60–79.  https://doi.org/10.23986/afsci.8542.CrossRefGoogle Scholar
  45. Hablot, E., Dharmalingam, S., Hayes, D. G., Wadsworth, L. C., Blazy, C., & Narayan, R. (2014). Effect of simulated weathering on physico-chemical properties and inherent biodegradation of PLA/PHA non-woven-based agricultural mulches. Journal of Polymers and the Environment, 22(4), 417–429.  https://doi.org/10.1007/s10924-014-0697-0.CrossRefGoogle Scholar
  46. Hakkarainen, M., Karlsson, S., & Albertsson, A. C. (2000). Rapid (bio)degradation of polylactide by mixed culture of compost microorganisms-low molecular weight products and matrix changes. Polymer, 41(7), 2331–2338.  https://doi.org/10.1016/s0032-3861(99)00393-6.CrossRefGoogle Scholar
  47. Hayes, D. G. & Flury, M. (2018). Summary and assessment of EN 17033:2018. a new standard for biodegradable plastic mulch films [Online]. Available: https://ag.tennessee.edu/biodegradablemulch/Pages/factsheets.aspx. Accessed 11 Feb 2019.
  48. Hayes, D. G., Dharmalingam, S., Wadsworth, L. C., Leonas, K. K., Miles, C., & Inglis, D. A. (2012). Biodegradable agricultural mulches derived from biopolymers. In K. C. Khemani & C. Scholz (Eds.), Degradable polymers and materials: Principles and practice (ACS Symposium Series) (Vol. 1114, 2nd ed., pp. 201–223). Washington, DC: American Chemical Society.  https://doi.org/10.1021/bk-2012-1114.ch013.CrossRefGoogle Scholar
  49. Hayes, D. G., Wadsworth, L. C., Sintim, H. Y., Flury, M., English, M., Schaeffer, S., & Saxton, A. M. (2017). Effect of diverse weathering conditions on the physicochemical properties of biodegradable plastic mulches. Polymer Testing, 62, 454–467.  https://doi.org/10.1016/j.polymertesting.2017.07.027.CrossRefGoogle Scholar
  50. Haynes, R. J. (2005). Labile organic matter fractions as central components of the quality of agricultural soils: An overview. In Advances in agronomy (pp. 221–268). Cambridge: Academic.  https://doi.org/10.1016/S0065-2113(04)85005-3.CrossRefGoogle Scholar
  51. Herniou--Julien, C., Mendieta, J. R., & Gutiérrez, T. J. (2019). Characterization of biodegradable/non-compostable films made from cellulose acetate/corn starch blends processed under reactive extrusion conditions. Food Hydrocolloids, 89, 67–79.  https://doi.org/10.1016/j.foodhyd.2018.10.024.CrossRefGoogle Scholar
  52. Herrera, R., Franco, L., Rodríguez-Galán, A., & Puiggalí, J. (2002). Characterization and degradation behavior of poly(butylene adipate-co-terephthalate)s. Journal of Polymer Science Part A: Polymer Chemistry, 40(23), 4141–4157.  https://doi.org/10.1002/pola.10501.CrossRefGoogle Scholar
  53. Howell, B. A., & Lazar, S. T. (2019). Biobased plasticizers from carbohydrate-derived 2, 5-bis(hydroxymethyl)furan. Industrial & Engineering Chemistry Research, 58(3), 1222–1228.  https://doi.org/10.1021/acs.iecr.8b05442.CrossRefGoogle Scholar
  54. Howell, B. A., & Sun, W. (2018). Biobased plasticizers from tartaric acid, an abundantly available, renewable material. Industrial & Engineering Chemistry Research, 57(45), 15234–15242.  https://doi.org/10.1021/acs.iecr.8b03486.CrossRefGoogle Scholar
  55. Hu, Y., Sato, H., Zhang, J., Noda, I., & Ozaki, Y. (2008). Crystallization behavior of poly(L-lactic acid) affected by the addition of a small amount of poly(3-hydroxybutyrate). Polymer, 49(19), 4204–4210.  https://doi.org/10.1016/j.polymer.2008.07.031.CrossRefGoogle Scholar
  56. Huerta Lwanga, E., Gertsen, H., Gooren, H., Peters, P., Salánki, T., van der Ploeg, M., Besseling, E., Koelmans, A. A., & Geissen, V. (2017). Incorporation of microplastics from litter into burrows of Lumbricus terrestris. Environmental Pollution, 220. (Part A),, 523–531.  https://doi.org/10.1016/j.envpol.2016.09.096.CrossRefPubMedGoogle Scholar
  57. Iapichino, G., Mustazza, G., Sabatino, L., & D’Anna, F. (2014). Polyethylene and biodegradable starch-based mulching films positively affect winter melon production in Sicily. Acta Horticulturae, 1015(1), 225–231.  https://doi.org/10.17660/ActaHortic.2014.1015.25.CrossRefGoogle Scholar
  58. Ibarra-Jimenez, L. R., Quezada-Martin, R., Cedeno-Rubalcava, B., Lozano, A. L., & de la Rosa-Ibarra, M. (2006). Watermelon response to plastic mulch and row covers. European Journal of Horticultural Science, 71(6), 262–266.Google Scholar
  59. Immirzi, B., Santagata, G., Vox, G., & Schettini, E. (2009). Preparation, characterisation and field-testing of a biodegradable sodium alginate-based spray mulch. Biosystems Engineering, 102(4), 461–472.  https://doi.org/10.1016/j.biosystemseng.2008.12.008.CrossRefGoogle Scholar
  60. Inkinen, S., Hakkarainen, M., Albertsson, A.-C., & Sodergard, A. (2011). From lactic acid to poly(lactic acid) (PLA): Characterization and analysis of PLA and its precursors. Biomacromolecules, 12(3), 523–532.  https://doi.org/10.1021/bm101302t.CrossRefPubMedGoogle Scholar
  61. International Organization for Standardization. (2003). ISO 9050:2003. Glass in building — determination of light transmittance, solar direct transmittance, total solar energy transmittance, ultraviolet transmittance and related glazing factors.Google Scholar
  62. Jamarani, R., Erythropel, C. H., Burkat, D., Nicell, A. J., Leask, L. R., & Maric, M. (2017). Rheology of green plasticizer/poly(vinyl chloride) blends via time–temperature superposition. Processes, 5(3), 43.  https://doi.org/10.3390/pr5030043.CrossRefGoogle Scholar
  63. Jastrow, J. D., Amonette, J. E., & Bailey, V. L. (2007). Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration. Climatic Change, 80(1), 5–23.  https://doi.org/10.1007/s10584-006-9178-3.CrossRefGoogle Scholar
  64. Jiang, X., Han, J., Han, Q., Zhou, X., & Ma, J. (2015). Preparation and characteristics of paper-based biodegradable plastics. BioResources, 10(2), 2982–2994.CrossRefGoogle Scholar
  65. Karamanlioglu, M., & Robson, G. D. (2013). The influence of biotic and abiotic factors on the rate of degradation of poly(lactic) acid (PLA) coupons buried in compost and soil. Polymer Degradation and Stability, 98(10), 2063–2071.  https://doi.org/10.1016/j.polymdegradstab.2013.07.004.CrossRefGoogle Scholar
  66. Kasirajan, S., & Ngouajio, M. (2012). Polyethylene and biodegradable mulches for agricultural applications: A review. Agronomy for Sustainable Development, 32(2), 501–529.  https://doi.org/10.1007/s13593-011-0068-3.CrossRefGoogle Scholar
  67. Kawai, F. (2010). Polylactic acid (PLA)-degrading microorganisms and PLA depolymerases. In Green polymer chemistry: Biocatalysis and biomaterials (ACS Symposium Series, Vol. 1043), eds Cheng, HN & Gross, RA, American Chemical Society, Washington, DC, pp. 405-414. doi: https://doi.org/10.1021/bk-2010-1043.ch027.Google Scholar
  68. Kijchavengkul, T., & Auras, R. (2008). Compostability of polymers. Polymer International, 57(6), 793–804.  https://doi.org/10.1002/pi.2420.CrossRefGoogle Scholar
  69. Kijchavengkul, T., Auras, R., Rubino, M., Ngouajio, M., & Fernandez, R. T. (2008a). Assessment of aliphatic-aromatic copolyester biodegradable mulch films. Part I: Field study. Chemosphere, 71(5), 942–953.  https://doi.org/10.1016/j.chemosphere.2007.10.074.CrossRefGoogle Scholar
  70. Kijchavengkul, T., Auras, R., Rubino, M., Ngouajio, M., & Fernandez, R. T. (2008b). Assessment of aliphatic-aromatic copolyester biodegradable mulch films. Part II: Laboratory simulated conditions. Chemosphere, 71(9), 1607–1616.  https://doi.org/10.1016/j.chemosphere.2008.01.037.CrossRefPubMedGoogle Scholar
  71. Kijchavengkul, T., Auras, R., Rubino, M., Alvarado, E., Camacho Montero, J. R., & Rosales, J. M. (2010). Atmospheric and soil degradation of aliphatic-aromatic polyester films. Polymer Degradation and Stability, 95(2), 99–107.  https://doi.org/10.1016/j.polymdegradstab.2009.11.048.CrossRefGoogle Scholar
  72. Koitabashi, M., Noguchi, M. T., Sameshima-Yamashita, Y., Hiradate, S., Suzuki, K., Yoshida, S., Watanabe, T., Shinozaki, Y., Tsushima, S., & Kitamoto, H. K. (2012). Degradation of biodegradable plastic mulch films in soil environment by phyllopland fungi isolated from framineous plants. AMB Express, 2(1), 40.  https://doi.org/10.1186/2191-0855-2-40.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Krull, E. S., Baldock, J. A., & Skjemstad, J. O. (2003). Importance of mechanisms and processes of the stabilisation of soil organic matter for modelling carbon turnover. Functional Plant Biology, 30(2), 207–222.  https://doi.org/10.1071/FP02085.CrossRefGoogle Scholar
  74. Lamont, W. J. (1999). The use of different colored mulches for yield and earliness. Proceedings New England Vegetable and Berry Growers Conference and Trade Show, Sturbridge. p. 299–302 [Online]. Available: http://ipm.uconn.edu/root/publications.php. Accessed 11 Feb 2019.
  75. Lamont, W. J. (2001). Vegetable production using agriculture [Online]. Available: http://www.fftc.agnet.org/htmlarea_file/library/20110808093747/eb476.pdf. Accessed 5 Feb 2019.
  76. Lamont, W. J. (2005). Plastics: Modifying the microclimate for the production of vegetable crops. HortTechnology, 15(3), 477–481.  https://doi.org/10.21273/horttech.15.3.0477.CrossRefGoogle Scholar
  77. Lehmann, J., & Kleber, M. (2015). The contentious nature of soil organic matter. Nature, 528, 60–68.  https://doi.org/10.1038/nature16069.CrossRefPubMedGoogle Scholar
  78. Li, F.-M., Song, Q.-H., Jjemba, P. K., & Shi, Y.-C. (2004). Dynamics of soil microbial biomass C and soil fertility in cropland mulched with plastic film in a semiarid agro-ecosystem. Soil Biology and Biochemistry, 36(11), 1893–1902.  https://doi.org/10.1016/j.soilbio.2004.04.040.CrossRefGoogle Scholar
  79. Li, Y.-S., Wu, L.-H., Zhao, L.-M., Lu, X.-H., Fan, Q.-L., & Zhang, F.-S. (2007). Influence of continuous plastic film mulching on yield, water use efficiency and soil properties of rice fields under non-flooding condition. Soil and Tillage Research, 93(2), 370–378.  https://doi.org/10.1016/j.still.2006.05.010.CrossRefGoogle Scholar
  80. Li, C., Moore-Kucera, J., Lee, J., Corbin, A., Brodhagen, M., Miles, C., & Inglis, D. (2014a). Effects of biodegradable mulch on soil quality. Applied Soil Ecology, 79, 59–69.  https://doi.org/10.1016/j.apsoil.2014.02.012.CrossRefGoogle Scholar
  81. Li, C., Moore-Kucera, J., Miles, C., Leonas, K., Lee, J., Corbin, A., & Inglis, D. (2014b). Degradation of potentially biodegradable plastic mulch films at three diverse U.S. locations. Agroecology and Sustainable Food Systems, 38(8), 861–889.  https://doi.org/10.1080/21683565.2014.884515.CrossRefGoogle Scholar
  82. Limpus, S. (2012). Comparison of biodegradable mulch products to polyethylene in irrigated vegetable, tomato and melon crops. Final report MT09068. Queensland Department of Agriculture, Fisheries and Forestry, Queensland.Google Scholar
  83. Liu, E. K., He, W. Q., & Yan, C. R. (2014). ‘White revolution’ to ‘white pollution’—Agricultural plastic film mulch in China. Environmental Research Letters, 9(9), 091001.  https://doi.org/10.1088/1748-9326/9/9/091001.CrossRefGoogle Scholar
  84. Luo, S., Zhu, L., Liu, J., Bu, L., Yue, S., Shen, Y., & Li, S. (2015). Sensitivity of soil organic carbon stocks and fractions to soil surface mulching in semiarid farmland. European Journal of Soil Biology, 67, 35–42.  https://doi.org/10.1016/j.ejsobi.2015.01.004.CrossRefGoogle Scholar
  85. Madhavan Nampoothiri, K., Nair, N. R., & John, R. P. (2010). An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 101(22), 8493–8501.  https://doi.org/10.1016/j.biortech.2010.05.092.CrossRefPubMedGoogle Scholar
  86. Mahmoudpour, M. A., & Stapleton, J. J. (1997). Influence of sprayable mulch colour on yield of eggplant (Solanum melongena L. cv. Millionaire). Scientia Horticulturae, 70(4), 331–338.  https://doi.org/10.1016/s0304-4238(97)00039-3.CrossRefGoogle Scholar
  87. Martin-Closas, L., & Pelacho, A. M. (2011). Agronomic potential of biopolymer films. In L. Martín-Closas & A. M. Pelacho (Eds.), Biopolymers – New materials for sustainable films and coatings (pp. 277–299).  https://doi.org/10.1002/9781119994312.ch13.CrossRefGoogle Scholar
  88. Martín-Closas, L., Bach, M. A., & Pelacho, A. M. (2008). Biodegradable mulching in an organic tomato production system. Acta Horticulturae, 767(1), 267–274.  https://doi.org/10.17660/ActaHortic.2008.767.28.CrossRefGoogle Scholar
  89. Martin-Closas, L., Botet, R., & Pelacho, A. M. (2014). An in vitro crop plant ecotoxicity test for agricultural bioplastic constituents. Polymer Degradation and Stability, 108, 250–256.  https://doi.org/10.1016/j.polymdegradstab.2014.03.037.CrossRefGoogle Scholar
  90. Martín-Closas, L., Costa, J., Cirujeda, A., Aibar, J., Zaragoza, C., Pardo, A., Suso, M. L., Moreno, M. M., Moreno, C., Lahoz, I., Mácua, J. I., & Pelacho, A. M. (2016). Above-soil and in-soil degradation of oxo- and bio-degradable mulches: A qualitative approach. Soil Research, 54(2), 225–236.  https://doi.org/10.1071/SR15133.CrossRefGoogle Scholar
  91. Martín-Closas, L., Costa, J., & Pelacho, A. M. (2017). Agronomic effects of biodegradable films on crop and field environment. In M. Malinconico (Ed.), Soil degradable bioplastics for a sustainable modern agriculture. Green chemistry and sustainable technology (pp. 67–104). Heidelberg: Springer.  https://doi.org/10.1007/978-3-662-54130-2_4.CrossRefGoogle Scholar
  92. Maughan, T. & Frost, D. (2016). Use of plastic mulch for vegetable production. Horticulture Extension, Utah State University [Online]. Available: https://digitalcommons.usu.edu/extension_curall/786/. Accessed 5 Feb 2019.
  93. Melek, E., & Atilla, D. (2009). Effect of different mulch materials on the plant growth, some quality parameters and yield of melon (Cucumis melo L.) cultivars in high altitude environmental condition. Pakistan Journal of Botany, 41(4), 1891–1901.Google Scholar
  94. Merfield, C. (2000). Organic weed management: A practical guide. [Online]. Available: http://www.merfield.com/research/2003/organic-weed-management-2003-merfield.pdf. Accessed 11 Feb 2019.
  95. Merino, D., Gutiérrez, T. J., Mansilla, A. Y., Casalongué, C., & Alvarez, V. A. (2018a). Critical evaluation of starch-based antibacterial nanocomposites as agricultural mulch films: Study on their interactions with water and light. ACS Sustainable Chemistry & Engineering, 6(11), 15662–15672.  https://doi.org/10.1021/acssuschemeng.8b04162.CrossRefGoogle Scholar
  96. Merino, D., Mansilla, A. Y., Gutiérrez, T. J., Casalongué, C. A., & Alvarez, V. A. (2018b). Chitosan coated-phosphorylated starch films: Water interaction, transparency and antibacterial properties. Reactive and Functional Polymers, 131, 445–453.  https://doi.org/10.1016/j.reactfunctpolym.2018.08.012.CrossRefGoogle Scholar
  97. Merino, D., Gutiérrez, T. J., & Alvarez, V. A. (2019a). Potential agricultural mulch films based on native and phosphorylated corn starch with and without surface functionalization with chitosan. Journal of Polymers and the Environment, 27(1), 97–105.  https://doi.org/10.1007/s10924-018-1325-1.CrossRefGoogle Scholar
  98. Merino, D., Gutiérrez, T. J., & Alvarez, V. A. (2019b). Structural and thermal properties of agricultural mulch films based on native and oxidized corn starch nanocomposites. Starch-Stärke, 71(7–8), 1800341.  https://doi.org/10.1002/star.201800341.
  99. Miles, C., Wallace, R., Wszelaki, A., Martin, J., Cowan, J., Walters, T., & Inglis, D. A. (2012). Deterioration of potentially biodegradable alternative to black plastic mulch in three tomato production regions. HortScience, 47(9), 1270–1277.  https://doi.org/10.21273/hortsci.47.9.1270.CrossRefGoogle Scholar
  100. Miles, C., De Vetter, L., Ghimire, S., & Hayes, D. G. (2017). Suitability of biodegradable plastic mulches for organic and sustainable agricultural production systems. HortScience, 52(1), 10–15.  https://doi.org/10.21273/hortsci11249-16.CrossRefGoogle Scholar
  101. Mitchell, J., Summers, C., McGiffen, M., Aguiar, J., Aslan, S. & Stapleton, J. (2004). Mulches in california vegetable crop production. Agriculture and natural resources, University of California, Publication No. 8129.Google Scholar
  102. Mohee, R., Unmar, G. D., Mudhoo, A., & Khadoo, P. (2008). Biodegradability of biodegradable/degradable plastic materials under aerobic and anaerobic conditions. Waste Management, 28(9), 1624–1629.  https://doi.org/10.1016/j.wasman.2007.07.003.CrossRefPubMedGoogle Scholar
  103. Moore-Kucera, J., Cox, S. B., Peyron, M., Bailes, G., Kinloch, K., Karich, K., Miles, C., Inglis, D. A., & Brodhagen, M. (2014). Native soil fungi associated with compostable plastics in three contrasting agricultural settings. Applied Microbiology and Biotechnology, 98(14), 6467–6485.  https://doi.org/10.1007/s00253-014-5711-x.CrossRefPubMedGoogle Scholar
  104. Moreno, M. M., & Moreno, A. (2008). Effect of different biodegradable and polyethylene mulches on soil properties and production in a tomato crop. Scientia Horticulturae, 116(3), 256–263.  https://doi.org/10.1016/j.scienta.2008.01.007.CrossRefGoogle Scholar
  105. Mormile, P., Stahl, N., & Malinconico, M. (2017). The world of plasticulture. In M. Malinconico (Ed.), Soil degradable bioplastics for a sustainable modern agriculture (pp. 1–21). Berlin/Heidelberg: Springer.  https://doi.org/10.1007/978-3-662-54130-2_1.CrossRefGoogle Scholar
  106. Mu, L., Liang, Y., Zhang, C., Wang, K., & Shi, G. (2014). Soil respiration of hot pepper (Capsicum annuum L.) under different mulching practices in a greenhouse, including controlling factors in China. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 64(1), 85–95.  https://doi.org/10.1080/09064710.2014.887141.CrossRefGoogle Scholar
  107. Mu, L., Fang, L., & Liang, Y. (2016). Temporal and spatial variation of soil respiration under mulching in a greenhouse cucumber cultivation. Pesquisa Agropecuária Brasileira, 51(7), 869–879.  https://doi.org/10.1590/S0100-204x2016000700010.CrossRefGoogle Scholar
  108. Muñoz, K., Buchmann, C., Meyer, M., Schmidt-Heydt, M., Steinmetz, Z., Diehl, D., Thiele-Bruhn, S., & Schaumann, G. E. (2017). Physicochemical and microbial soil quality indicators as affected by the agricultural management system in strawberry cultivation using straw or black polyethylene mulching. Applied Soil Ecology, 113, 36–44.  https://doi.org/10.1016/j.apsoil.2017.01.014.CrossRefGoogle Scholar
  109. Muroi, F., Tachibana, Y., Kobayashi, Y., Sakurai, T., & Kasuya, K. (2016). Influences of poly(butylene adipate-co-terephthalate) on soil microbiota and plant growth. Polymer Degradation and Stability, 129, 338–346.  https://doi.org/10.1016/j.polymdegradstab.2016.05.018.CrossRefGoogle Scholar
  110. Murphy, J. (2001). Additives for plastics handbooks. New York: Elsevier Science Ltd.Google Scholar
  111. Natural Resources Conservation Service (U.S. Department of Agriculture). (2019). Soil Health [Online]. Available: http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/. Accessed 31 Jan 2019.
  112. Núñez-Zofío, M., Larregla, S., & Garbisu, C. (2011). Application of organic amendments followed by soil plastic mulching reduces the incidence of Phytophthora capsici in pepper crops under temperate climate. Crop Protection, 30(12), 1563–1572.  https://doi.org/10.1016/j.cropro.2011.08.020.CrossRefGoogle Scholar
  113. Oehlmann, J., Schulte-Oehlmann, U., Kloas, W., Jagnytsch, O., Lutz, I., Kusk, K. O., Wollenberger, L., Santos, E. M., Paull, G. C., Van Look, K. J., & Tyler, C. R. (2009). A critical analysis of the biological impacts of plasticizers on wildlife. Philosophical Transactions of the Royal Society B, Biological Sciences, 364(1526), 2047–2062.  https://doi.org/10.1098/rstb.2008.0242.CrossRefPubMedGoogle Scholar
  114. Paul, E. A., Paustian, K., Elliott, E. T., & Cole, C. V. (1997). Soil organic matter in temperate agroecosystems: Long-term experiments in North America. Boca Raton: Cambridge University Press.Google Scholar
  115. Pereira, W., Crabtree, G., & William, R. D. (1987). Herbicide action on purple and yellow nutsedge (Cyperus rotundus and C. esculentus). Weed Technology, 1(1), 92–98.  https://doi.org/10.1017/s0890037x00029201.CrossRefGoogle Scholar
  116. Pfister, B. & Labowsky, H. J. (2003). Biodegradable materials and natural fibre composites in agriculture and horticulture: International symposium, June 2–4, 2002 in Hanover, Darmstadt, KTBL.Google Scholar
  117. Pittol, M., Tomacheski, D., Simões, D. N., Ribeiro, V. F., & Santana, R. M. C. (2017). Antimicrobial performance of thermoplastic elastomers containing zinc pyrithione and silver nanoparticles. Materials Research, 20(5), 1266–1273.  https://doi.org/10.1590/1980-5373-mr-2017-0137.CrossRefGoogle Scholar
  118. Plastics Technology. (2019). Overview of the extrusion process [Online]. Available: https://www.ptonline.com/knowledgecenter/Profile-Extrusion/profile-extrusion-fundamentals. Accessed 8 Feb 2019.
  119. Posada, J. A., Naranjo, J. M., Lopez, J. A., Higuita, J. C., & Cardona, C. A. (2011). Design and analysis of poly-3-hydroxybutyrate production processes from crude glycerol. Process Biochemistry (Amsterdam, Neth.), 46(1), 310–317.  https://doi.org/10.1016/j.procbio.2010.09.003.CrossRefGoogle Scholar
  120. Ram, A. (1997). Fundamentals of polymer engineering. Boston: Springer.CrossRefGoogle Scholar
  121. Roohi, Zaheer, M. R., & Kuddus, M. (2018). PHB (poly-β-hydroxybutyrate) and its enzymatic degradation. Polymers for Advanced Technologies, 29(1), 30–40.  https://doi.org/10.1002/pat.4126.CrossRefGoogle Scholar
  122. Rudnik, E., & Briassoulis, D. (2011). Degradation behaviour of poly(lactic acid) films and fibres in soil under Mediterranean field conditions and laboratory simulations testing. Industrial Crops and Products, 33(3), 648–658.  https://doi.org/10.1016/j.indcrop.2010.12.031.CrossRefGoogle Scholar
  123. Rychter, P., Biczak, R., Herman, B., Smylla, A., Kurcok, P., Adamus, G., & Kowalczuk, M. (2006). Environmental degradation of polyester blends containing atactic poly(3-hydroxybutyrate). Biodegradation in soil and ecotoxicological impact. Biomacromolecules, 7(11), 3125–3131.  https://doi.org/10.1021/bm060708r.CrossRefPubMedGoogle Scholar
  124. Santagata, G., Schettini, E., Vox, G., Immirzi, B., Mugnozza, G. S., & Malinconico, M. (2017). Biodegradable spray mulching and nursery pots: New frontiers for research. In Soil degradable bioplastics for a sustainable modern agriculture (pp. 105–137).  https://doi.org/10.1007/978-3-662-54130-2_5.CrossRefGoogle Scholar
  125. Shah, A. A., Hasan, F., Hameed, A., & Ahmed, S. (2008). Biological degradation of plastics: A comprehensive review. Biotechnology Advances, 26(3), 246–265.  https://doi.org/10.1016/j.biotechadv.2007.12.005.CrossRefPubMedGoogle Scholar
  126. Shen, L., Worrell, E., & Patel, M. (2010). Present and future development in plastics from biomass. Biofuels, Bioproducts & Biorefining, 4(1), 25–40.  https://doi.org/10.1002/bbb.189.CrossRefGoogle Scholar
  127. Sherman, L. M. (2008). Additives are needed for toughness, heat resistance & processability. Plastics Technology, 54(7), 58–63.Google Scholar
  128. Shi, B., & Palfery, D. (2010). Enhanced mineralization of PLA meltblown materials due to plasticization. Journal of Polymers and the Environment, 18(2), 122–127.  https://doi.org/10.1007/s10924-010-0190-3.CrossRefGoogle Scholar
  129. Shi, B., & Palfery, D. (2012). Temperature-dependent polylactic acid (PLA) anaerobic biodegradability. International Journal of Environment and Waste Management, 10(2/3), 297–306.  https://doi.org/10.1504/ijewm.2012.048324.CrossRefGoogle Scholar
  130. Shogren, R. L. (2000). Biodegradable mulches from renewable resources. Journal of Sustainable Agriculture, 16(4), 33–47.  https://doi.org/10.1300/J064v16n04_05.CrossRefGoogle Scholar
  131. Shogren, R. L., & Hochmuth, R. C. (2004). Field evaluation of watermelon grown on paperpolymerized vegetable oil mulches. HortScience, 39(7), 1588–1591.  https://doi.org/10.21273/hortsci.39.7.1588.CrossRefGoogle Scholar
  132. Siegenthaler, K. O., Kuenkel, A., Skupin, G., & Yamamoto, M. (2012). Ecoflex and Ecovio: Biodegradable, performance-enabling plastics. In B. Rieger, A. Künkel, G. Coates, R. Reichardt, E. Dinjus, & T. Zevaco (Eds.), Synthetic biodegradable polymers (pp. 91–136). Berlin/Heidelberg: Springer.  https://doi.org/10.1007/12_2010_106.CrossRefGoogle Scholar
  133. Singh, P., Saengerlaub, S., Abas Wani, A., & Langowski, H.-C. (2012). Role of plastics additives for food packaging. Pigment & Resin Technology, 41(6), 368–379.  https://doi.org/10.1108/03699421211274306.CrossRefGoogle Scholar
  134. Sintim, H. Y., Bandopadhyay, S., English, M. E., Bary, A. I., DeBruyn, J. M., Schaeffer, S. M., Miles, C. A., Reganold, J. P., & Flury, M. (2019). Impacts of biodegradable plastic mulches on soil health. Agriculture, Ecosystems & Environment, 273, 36–49.  https://doi.org/10.1016/j.agee.2018.12.002.CrossRefGoogle Scholar
  135. Siwek, P., Domagala-Swiatkiewicz, I., & Kalisz, A. (2015). The influence of degradable polymer mulches on soil properties and cucumber yield. Agrochimica, 59(2), 108–123.  https://doi.org/10.12871/0021857201522.CrossRefGoogle Scholar
  136. Smith, P. B. (2015). Bio-based sources for terephthalic acid. In H. N. Cheng, R. A. Gross, & P. B. Smith (Eds.), Green polymer chemistry: Biobased materials and biocatalysis (ACS Symposium Series) (Vol. 1192, pp. 453–469). American Chemical Society.  https://doi.org/10.1021/bk-2015-1192.ch027.Google Scholar
  137. Snowdon, M. R., Mohanty, A. K., & Misra, M. (2014). A study of carbonized lignin as an alternative to carbon black. ACS Sustainable Chemistry & Engineering, 2(5), 1257–1263.  https://doi.org/10.1021/sc500086v.CrossRefGoogle Scholar
  138. Sodergard, A., & Stolt, M. (2010). Industrial production of high molecular weight poly(lactic acid). In R. Auras, L. T. Lim, S. E. M. Selke, & H. Tsuji (Eds.), Poly(Lactic Acid): Synthesis, structures, properties, processing, and applications (pp. 27–41). Hoboken: Wiley.  https://doi.org/10.1002/9780470649848.ch3.CrossRefGoogle Scholar
  139. Soil Health Institute. (2019). North American project to evaluate soil health measurements. [Online]. The Soil Health Institute, Morrisville. Available: https://soilhealthinstitute.org/north-american-project-to-evaluate-soil-health-measurements. Accessed 5 Feb 2019.
  140. Sollins, P., Homann, P., & Caldwell, B. A. (1996). Stabilization and destabilization of soil organic matter: Mechanisms and controls. Geoderma, 74(1), 65–105.  https://doi.org/10.1016/S0016-7061(96)00036-5.CrossRefGoogle Scholar
  141. Soroka, W. (2002). Fundamentals of packaging technology. Naperville: Institute of Packaging Professionals.Google Scholar
  142. Srivastava, R. K., Rahman, Q., Kashyap, M. P., Singh, A. K., Jain, G., Jahan, S., Lohani, M., Lantow, M., & Pant, A. B. (2012). Nano-titanium dioxide induces genotoxicity and apoptosis in human lung cancer cell line, A549. Human & Experimental Toxicology, 32(2), 153–166.  https://doi.org/10.1177/0960327112462725.CrossRefGoogle Scholar
  143. Staub, C. (2018). Ag plastics recycling operation branches out [Online]. Available: https://resource-recycling.com/recycling/2018/05/30/details-on-a-growing-ag-plastics-recycling-operation/. Accessed 9 Feb 2019.
  144. Steinmetz, Z., Wollmann, C., Schaefer, M., Buchmann, C., David, J., Tröger, J., Muñoz, K., Frör, O., & Schaumann, G. E. (2016). Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Science of the Total Environment, 550, 690–705.  https://doi.org/10.1016/j.scitotenv.2016.01.153.CrossRefPubMedGoogle Scholar
  145. Tachibana, Y., Kimura, S., & Kasuya, K.-i. (2015). Synthesis and verification of biobased terephthalic acid from furfural. Scientific Reports, 5, 8249.  https://doi.org/10.1038/srep08249.CrossRefPubMedPubMedCentralGoogle Scholar
  146. Touchaleaume, F., Martin-Closas, L., Angellier-Coussy, H., Chevillard, A., Cesar, G., Gontard, N., & Gastaldi, E. (2016). Performance and environmental impact of biodegradable polymers as agricultural mulching films. Chemosphere, 144, 433–439.  https://doi.org/10.1016/j.chemosphere.2015.09.006.CrossRefGoogle Scholar
  147. Tullo, A. H. (2012). Old plastics, fresh dirt. Chemical and Engineering News, 90(12), 12–18.CrossRefGoogle Scholar
  148. U.S. Department Agriculture. (2015). Report on biodegradable biobased mulch films [Online]. Available: https://www.ams.usda.gov/sites/default/files/media/Biobased%20mulches%20report.pdf. Accessed 10 Feb 2019.
  149. U.S. Department of Agriculture. (2008). Soil quality test kit guide [Online]. Available: https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/health/assessment/?cid=nrcs142p2_053873. Accessed 10 Feb 2019.
  150. U.S. Environmental Protection Agency. (2012). Report to congress on black carbon (EPA-450/R-12-001) [Online]. Available: https://nepis.epa.gov/. Accessed 10 Feb 2019.
  151. U.S. Senate Committee on Agriculture Nutrition and Forestry. (2006). Energy title (Title IX) of the farm security and rural investment act of 2002 [Online]. Available: http://www.agriculture.senate.gov/imo/media/doc/107-171%20-%20Farm%20Security%20And%20Rural%20Investment%20Act%20Of%202002.pdf. Accessed 10 Sept 2018.
  152. Vox, G., Santagata, G., Malinconico, M. I., Mmirzi, B., Scarascia Mugnozza, G., & Schettini, E. (2013). Biodegradable films and spray coatings as eco-friendly alternative to petro-chemical derived mulching films. Journal of Agricultural Engineering, 44(2s), 221–225.  https://doi.org/10.4081/jae.2013.286.CrossRefGoogle Scholar
  153. Vroman, I., & Tighzert, L. (2009). Biodegradable polymers. Materials, 2(2), 307–344.  https://doi.org/10.3390/ma2020307.CrossRefPubMedCentralGoogle Scholar
  154. Wang, Y., Zhu, X., Lao, Y., Lv, X., Tao, Y., Huang, B., Wang, J., Zhou, J., & Cai, Z. (2016a). TiO2 nanoparticles in the marine environment: Physical effects responsible for the toxicity on algae. Phaeodactylum tricornutum, Science of The Total Environment, 565(1), 818–826.  https://doi.org/10.1016/j.scitotenv.2016.03.164.CrossRefPubMedGoogle Scholar
  155. Wang, Y. P., Li, X. G., Fu, T. T., Wang, L., Turner, N. C., Siddique, K. H. M., & Li, F. M. (2016b). Multi-site assessment of the effects of plastic-film mulch on the soil organic carbon balance in semiarid areas of China. Agricultural and Forest Meteorology, 228(1), 42–51.  https://doi.org/10.1016/j.agrformet.2016.06.016.CrossRefGoogle Scholar
  156. Webster, T. M. (2017). Patch expansion of purple nutsedge (Cyperus rotundus) and yellow nutsedge (Cyperus esculentus) with and without polyethylene mulch. Weed Science, 53(6), 839–845.  https://doi.org/10.1614/WS-05-045R.1.CrossRefGoogle Scholar
  157. Weng, Y.-X., Wang, L., Zhang, M., Wang, X.-L., & Wang, Y.-Z. (2013). Biodegradation behavior of P(3HB,4HB)/PLA blends in real soil environments. Polymer Testing, 32(1), 60–70.  https://doi.org/10.1016/j.polymertesting.2012.09.014.CrossRefGoogle Scholar
  158. Wortman, S. E., Kadoma, I., & Crandall, M. D. (2016). Biodegradable plastic and fabric mulch performance in field and high tunnel cucumber production. HortTechnology, 26(2), 148–155.  https://doi.org/10.21273/horttech.26.2.148.CrossRefGoogle Scholar
  159. Yamamoto-Tamura, K., Hiradate, S., Watanabe, T., Koitabashi, M., Sameshima-Yamashita, Y., Yarimizu, T., & Kitamoto, H. (2015). Contribution of soil esterase to biodegradation of aliphatic polyester agricultural mulch film in cultivated soils. AMB Express, 5(1), 10.  https://doi.org/10.1186/s13568-014-0088-x.CrossRefPubMedPubMedCentralGoogle Scholar
  160. Yousif, E., & Haddad, R. (2013). Photodegradation and photostabilization of polymers, especially polystyrene: Review. SpringerPlus, 2(1), 398.  https://doi.org/10.1186/2193-1801-2-398.CrossRefPubMedPubMedCentralGoogle Scholar
  161. Zhang, M., & Thomas, N. L. (2011). Blending polylactic acid with polyhydroxybutyrate: The effect on thermal, mechanical, and biodegradation properties. Advances in Polymer Technology, 30(2), 67–79.  https://doi.org/10.1002/adv.20235.CrossRefGoogle Scholar
  162. Zhang, G., Zhang, X., & Hu, X. (2013). Runoff and soil erosion as affected by plastic mulch patterns in vegetable field at Dianchi lake’s catchment, China. Agricultural Water Management, 122, 20–27.  https://doi.org/10.1016/j.agwat.2013.02.004.CrossRefGoogle Scholar
  163. Zhang, Y., Rempel, C., & McLaren, D. (2014). In J. H. Han (Ed.), Chapter 16 – thermoplastic starch in innovations in food packaging (2nd ed., pp. 391–412). San Diego: Academic.  https://doi.org/10.1016/b978-0-12-394601-0.00016-3.CrossRefGoogle Scholar
  164. Zhang, F., Li, M., Qi, J., Li, F., & Sun, G. (2015). Plastic film mulching increases soil respiration in ridge-furrow maize management. Arid Land Research and Management, 29(4), 432–453.  https://doi.org/10.1080/15324982.2015.1018456.CrossRefGoogle Scholar
  165. Zhang, F., Zhang, W., Li, M., Yang, Y., & Li, F.-M. (2017a). Does long-term plastic film mulching really decrease sequestration of organic carbon in soil in the loess plateau? European Journal of Agronomy, 89, 53–60.  https://doi.org/10.1016/j.eja.2017.06.007.CrossRefGoogle Scholar
  166. Zhang, F., Zhang, W., Li, M., Zhang, Y., Li, F., & Li, C. (2017b). Is crop biomass and soil carbon storage sustainable with long-term application of full plastic film mulching under future climate change? Agricultural Systems, 150, 67–77.  https://doi.org/10.1016/j.agsy.2016.10.011.CrossRefGoogle Scholar
  167. Zhu, D., Chen, Q.-L., An, X.-L., Yang, X.-R., Christie, P., Ke, X., Wu, L.-H., & Zhu, Y.-G. (2018). Exposure of soil collembolans to microplastics perturbs their gut microbiota and alters their isotopic composition. Soil Biology and Biochemistry, 116, 302–310.  https://doi.org/10.1016/j.soilbio.2017.10.027.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Douglas G. Hayes
    • 1
    Email author
  • Marife B. Anunciado
    • 1
  • Jennifer M. DeBruyn
    • 1
  • Sreejata Bandopadhyay
    • 1
  • Sean Schaeffer
    • 1
  • Marie English
    • 1
  • Shuresh Ghimire
    • 2
  • Carol Miles
    • 3
  • Markus Flury
    • 4
  • Henry Y. Sintim
    • 4
  1. 1.Department of Biosystems Engineering and Soil ScienceUniversity of TennesseeKnoxvilleUSA
  2. 2.Department of Extension, Tolland County Extension CenterUniversity of ConnecticutVernonUSA
  3. 3.Department of Horticulture, Northwestern Washington Research and Extension CenterWashington State UniversityMount VernonUSA
  4. 4.Department of Crop and Soil ScienceWashington State UniversityPuyallupUSA

Personalised recommendations