Skip to main content

Models and Procedures of Product Development

  • Chapter
  • First Online:
Integrated Design Engineering

Abstract

Integrated Product Development (IPD) is one of the best-known integration approaches to support product development [GeBa-2002], which is not limited to specific industries. It arose from the necessity to integrate all areas involved in the generation of a product (starting with marketing, followed by production to sales) into product development by means of suitable measures, to overcome forms of organization based on the division of labour and to concentrate not only on solving technical problems but also on the associated processes [Olss-1985, Ehrl-1995, Burc-2001].

The author would like to cordially thank Prof. Dr.-Ing. K. Ehrlenspiel for numerous valuable contributions to the entire chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In predictive engineering, the properties, behaviour and associated processes of a product and its components are simulated in advance, both individually and in conjunction, by corresponding systems (predominantly FEM systems) and evaluated with current information (at least from those areas downstream of the IPD, usually from the subsequent product life) [Wart-2000].

  2. 2.

    Reverse engineering analyses an existing product in order to identify the components used in it and their interrelations in order to create product documentation from it, especially if access to the original product documentation is no longer possible [OtWo-2001].

  3. 3.

    This statement supports the Pareto Principle formulated by Vilfredo Pareto at the beginning of the twentieth century according to which about 80% of the results can be achieved in 20% of the total time of a project, but the remaining 20% of the results require 80% of the total time (see also Sect.  15.4.3 in Chapter 15).

  4. 4.

    Ken Wallace (1944-2018) translated with L. Blessing and F. Bauert the most significant textbook of German design, the ‘Konstruktionslehre’ by G. Pahl and W. Beitz, into English (‘Engineering design—a Systematic Approach’) and edited it. Without his congenial treatment and adaptation of the contents of the book to the Anglo-Saxon forms and ways of designing, the ‘Konstruktionslehre’ would not have acquired this importance in English-speaking countries that it has today.

  5. 5.

    Vladimir Hubka (1924–2006), pioneer of modern design sciences, founder of the International Conference on Engineering design series (ICED) in 1981, which has been held since then every two years at various locations around the world.

  6. 6.

    According to the Latin principle of ‘divide et impera’ (divide and rule).

  7. 7.

    Fredy Olsson (1935–1993) taught at the University of Lund (Sweden). His dissertation ‘Systematisk Konstruktion’ from 1976 already contained the name, type and contents of IPD [Olss-1976].

  8. 8.

    The term ‘integrated team’ originates from the military environment. Napoléon Bonaparte was the first to use the term ‘integrated army corps’ for teams of infantrymen and cavalrymen [Smed-1994].

  9. 9.

    The integration of activities and/or fields is supported by all European sources, but also for example by the Product Development and Management Association (PDMA): ‘A philosophy that systematically employs an integrated team effort from multiple functional disciplines to develop effectively and efficiently new products that satisfy customer needs.’ [PDMA-2011].

  10. 10.

    In SE, different (and originally sequential) activities in product development (such as development, Engineering design and process planning) are overlapped in time and executed in parallel, with an intensive exchange of information occurring in each overlap area. With CE, a voluminous task is divided among several persons who work on it in parallel. Therefore, the definition of physical and logical design spaces with clear interfaces between each other is a prerequisite for CE. The most important criterion for parallelization for SE and CE is the question of when the results of the previously started work step are so stable that the statistical probability of a change and the associated change costs are lower than the costs caused by working too late [VWZH-2018].

  11. 11.

    In general, it is hardly possible to specify the exact proportions of new design, adaptation design and variant design in practice, especially since the boundaries are fluid. Estimates are in the range of 20–30% variant design, 15–25% new design, thus approx. 45–65% matching adaptation design.

  12. 12.

    For example, Apple used to launch products on the market before there was a direct need for them (thus created the respective need), starting with the digital music player iPod, the mobile phone iPhone, the tablet computer iPad and the Apple Watch. One of the reasons for the respective market success might be the fact that several previously separate application areas have been integrated into each of these devices, and the range of functions offered can be used via an intuitive user interface.

  13. 13.

    The strategies, activities and information systems necessary to ensure and optimize information flows are part of information logistics in analogy to logistics in materials management.

  14. 14.

    The acronym DfX stands for ‘Design for property X’: e.g. design for production, assembly, use and recycling, see also Chap. 14).

  15. 15.

    In the knowledge-based process model of Freisleben [Frei-2001], each method is assigned the corresponding procedures as well as manual and computer-aided tools, so that when a method is activated, all corresponding tools needed are automatically activated. The selection itself, if it cannot be performed context sensitively, can also be done with the Morphological Box of Zwicky [Zwic-1982].

  16. 16.

    A profit centre is usually a legally and organizationally independent organizational unit with full product and profit responsibility in the enterprise, usually in holding organizations.

  17. 17.

    Further details can be found in [EhMe-2017] and there in Sect. 3.6.

  18. 18.

    To the well-known saying of Descartes ‘I think, therefore I am’, which is related to rational thinking, one would have to add according to today’s knowledge: ‘It thinks, therefore I am’ if one makes clear that all bodily functions of man are predominantly unconscious, and a large part of the sensory experiences of man, his rational thinking, is ‘only a small icing on the cake of unconscious life’! Or, to put it another way: Man is lived more by the unconscious than is assumed.

  19. 19.

    This agrees with the statement in Fig. 1.1 that product development influences 75% of the later total costs (and thus also the possible profits).

  20. 20.

    Sir Isaac Newton (1643–1727) conducted research in the fields of mathematics and physics. He is regarded as the founder of mechanics (including the laws of motion). With the laws of gravity, he described the phenomenon of gravity. Parallel to Leibnitz he developed the differential and integral calculus and founded acoustics discipline. In optics, he proved the composition of white light by the spectral colours and established the emission theory of light with the corpuscle model. Newton is considered one of the greatest scientists of all time.

  21. 21.

    In a Planetary Organization the manager/project leader (‘sun’) is in the centre, with sub-managers/sub-project leaders (‘planets’) around the sun, in direct contact with each other. Grouped around each planet are single associates or teams (‘moons’), also in direct contact with each other. In addition, experts and senior managers act as ‘comets’ by pollinating and influencing others in the organization (as planned or spontaneously) in a positive way [Otto-1998].

  22. 22.

    In [Schr-2000] it is stated that successful (and progressive) companies carry out significantly more tests per time unit than ‘normal’ companies.

  23. 23.

    Hence the high proportion of adaptation design in industry (figures vary between 55 and 70% of all development assignments).

  24. 24.

    All results of the research on the Magdeburg Model of IPD are evaluated for relevance and relevance by industrial projects, the results of which flow continuously into the evolution of the Magdeburg Model and its successor Integrated Design Engineering (IDE).

  25. 25.

    The term ‘synthesis’ is not understood here primarily in the sense of design methodology as the transformation of requirements into solution characteristics, but in the sense of Hegel’s dialectic with the argumentation triangle thesis—antithesis—synthesis (the triangle itself was introduced into dialectic by Fichte). The thesis is an assertion to which an antithesis is made by negation, contradiction or opposition. Thesis and antithesis drive the cognitive process to a new level. This new level or the new formulation on this level results in the synthesis, in which the positions of thesis and antithesis are contained to a large extent equally, albeit in the changed form (according to [EWDS-1998]).

  26. 26.

    ‘CA’ stands for computer-aided and ‘x’ is a placeholder for acronyms that specify certain fields of application (e.g. ‘D’ for design). CAx as a stand-alone term in the meaning computer-aided Everything describes the systematic use of computer-aided methods, procedures and tools [VWZH-2018].

  27. 27.

    For an introduction to the C-K design theory see [AHAB-2011], for a comprehensive synthesis and corresponding examples see [MaWH-2017].

  28. 28.

    Generativity is the capacity of design theory to produce ‘novel’ solutions from a given knowledge background (see academic references in [MaWH-2017]).

  29. 29.

    Fixation (in design and creativity cognition) describe the fact that, in a design task, designers tend to explore only a limited set of alternatives. As a prepossession, they are cognitively hindered to explore the whole set of imaginable alternatives (see academic references in [MaWH-2017])

  30. 30.

    The Simonian Theory of Design, formulated by H. A. Simon in the 1960ies, is based on search algorithms in complex combinatorial problem spaces (c.f. e.g. [Simo-1997]).

  31. 31.

    Not to be confused with the ‘attribute’ term applied in Integrated Design Engineering (see Chap. 3 for its definition and description)

  32. 32.

    The ability to make discoveries by chance and ingenuity that were not searched for.

  33. 33.

    During the on-going research, the scope of the ADT has increasingly expanded from supporting the design process to supporting the whole product development process, i.e. is in change from design theory to development theory.

  34. 34.

    Theoretically, it is possible that among the solution set there is one solution that dominates all other.

  35. 35.

    The target function represents the synthesis of the optimization goals derived from the requirements, which need to be fulfilled under certain conditions and in certain environments, even if these requirements contradict or exclude each other.

  36. 36.

    The particular fitness is realized by a synthesis of the actual levels of the respective fulfilments of the requirement. These are compared to the target function. Deviations from the target function can result in new optimization directions.

  37. 37.

    ‘Most advanced’ doesn’t mean the absolute value, but always a relation to the actual state of fulfilment of the target function (i.e. the actual fitness of the regarded parent).

  38. 38.

    Potential exceptions are tasks with very specific requirements, which leave only a very small range for possible solutions.

  39. 39.

    As an example: If a requirement prescribes a non-magnetic material, the resulting ban excludes all magnetic materials but doesn’t limit the variety of non-magnetic materials from any discipline.

  40. 40.

    The original solution on the right side is now situated within a taboo zone. This indicates that requirements etc. were properly formulated in order to create an advanced solution of which the quality surpasses the quality of the original solution.

  41. 41.

    NOA = Natural Optimization Algorithm

  42. 42.

    More optimization methods (e.g. simulated annealing, particle swarm, deterministic methods for refined solution search in optimized areas as well as their dynamic parallel processing by model decomposition to increase efficiency [Wüns-2017]) are currently being integrated into NOA.

  43. 43.

    Detailed information of further industrial applications of the ADT in different branches can be found, e.g. in [VCJB-2005, Clem-2005, KiVa-2009]

References

  1. Agogué, M., Hooge, S., Arnoux, F., Brown, I.: An Introduction to Innovative Design—Elements and Applications of C-K theory. Sciences de la Conception. Les Presses de l’Ecole des Mines Paris (2014)

    Google Scholar 

  2. Albers, A., Ebel, B., Lohmeyer, Q.: Systems of objectives in complex product development. In: Proceedings of the 9th International Symposium on Tools and Methods of Competitive Engineering (TMCE 2012), Karlsruhe, S. 267–278. University of Technology, Delft (2012)

    Google Scholar 

  3. Altshuller, G.: “40 Principles—TRIZ Keys to Technical Innovation” (translated and edited by L. Shulyak, S. Rodman). Technical Innovation Center Worcester, MA, USA (2003)

    Google Scholar 

  4. Ambrosy, S., Lindemann, U.: Methoden und Werkzeuge für die Integrierte Produktentwicklung. Technische Universität München, Shaker Verlag Aachen, Lehrstuhl für Konstruktion im Maschinenbau (1997)

    Google Scholar 

  5. Andreasen, M.M., Fabricius, F.: Innovation by design for manufacture. In: VDI-Berichte Nr. 1212, VDI-Verlag, Düsseldorf (1995)

    Google Scholar 

  6. Andreasen, M.M., Hein, L.: Integrated Product Development. Springer, Berlin (1987)

    Google Scholar 

  7. Andreasen, M.M., Kähler, S., Lund, T.H.: Montagerechtes Konstruieren. Springer, Berlin (1985)

    Book  Google Scholar 

  8. Andreasen, M.M., Olsson, F.: Situation in design and design methodology in the Nordic countries. In: Hubka, V. (ed.) Review of Design Methodology, ICED 81 Rom. Schriftenreihe WDK 5, Seiten 9–16 (1981)

    Google Scholar 

  9. Ashkenas, R.: Simplicity-minded management. Harvard Business Review 85(2007)12, pp S. 101–109

    Google Scholar 

  10. Bauer, S.: Design for X—Ansätze zur Definition und Strukturierung. In: Meerkamm, H. (Herausgeber) Design for X, Beiträge zum 14. Symposium Neukirchen (2003)

    Google Scholar 

  11. Bender, B., Gericke, K.: Pahl/Beitz Konstruktionslehre. Methoden und Anwendung erfolgreicher Produktentwickl ung. Springer Heidelberg (2020)

    Google Scholar 

  12. Bercsey, T., Horák, P.: Integrierte Produktentwicklung in der Lehre und in der Praxis. 4. Magdeburger Maschinenbautage. Magdeburg (1999)

    Google Scholar 

  13. Bercsey, T., Vajna, S.: “Ein Autogenetischer Ansatz für die Konstruktionstheorie”. CAD-CAM Report 13, vol. 2, pp. 66–71 and 14 vol. 3, pp. 98–105 (1994)

    Google Scholar 

  14. Bischoff, W., Hansen, F.: Rationelles Konstruieren. VEB-Verlag Technik, Berlin (1953)

    Google Scholar 

  15. Björk, E.: A Contribution to Insider Action Research Applied on Development of Assistive Products. Magdeburg (2004)

    Google Scholar 

  16. Bramklev. C.: Concurrent Development of Product and Packaging—Towards an Integrated Development Procedure. Dissertation Universität Lund, Schweden (2004)

    Google Scholar 

  17. Brügger, C.; Hartschen, M.; Scherer, J.: Simplicity: Prinzipien der Einfachheit: Strategien für einfache Produkte, Dienstleistungen und Prozesse. Gabal-Verlag Offenbach (2013)

    Google Scholar 

  18. Briggs, J., Peat, F. D.: “Die Entdeckung des Chaos”. Carl Hanser Verlag, München (1990)

    Google Scholar 

  19. Bullinger, H.-J.: Erfolgsfaktor Mitarbeiter: Motivation-Kreativität-Innovation, B.G. Teubner-Stuttgart (1996)

    Google Scholar 

  20. Burchardt, C.: Ein erweitertes Konzept für die Integrierte Produktentwicklung. Dissertation Otto-von-Guericke-Universität Magdeburg (2001)

    Google Scholar 

  21. Cagan, J., Vogel, C.: Creating Breakthrough Products, 2nd edn. Pearson Education (2013)

    Google Scholar 

  22. Chen, K.Z., Feng, X.A.: A framework of the genetic-engineering-based design theory and methodology for product innovation. In: Norell, M. (ed.) Proceedings of the 14th International Conference on Engineering Design ICED03, presentation 1745, Design Society 31, Stockholm 2003, Abstract p. 671 (2003)

    Google Scholar 

  23. Choi, J. H.; Lee, H.-J.: Facets of simplicity for the smartphone interface: A structural model. International Journ al of Human-Computer Studies 70(2012)2, Pp. 129-142

    Google Scholar 

  24. Clement, S.: Erweiterung und Verifikation der Autogenetische Konstruktionstheorie mit Hilfe einer evolutionsbasierten und systematisch-opportunistischen Vorgehensweise. Dissertation Universität Magdeburg (2005)

    Google Scholar 

  25. Csányi, V.: Evolúciós rendszerek. Gondolat Könyvkiadó Budapest 1988 (an English translation with several addenda appeared under the title “Evolutionary Systems and Society”, Duke University Press, 1989)

    Google Scholar 

  26. Daenzer, W.F.: Systems Engineering—Methodik und Praxis. Verlag Industrielle Organisation, Zürich (1992)

    Google Scholar 

  27. Dombrowski, U.; Mielke, T.: Ganzheitliche Produktionssysteme: Aktueller Stand und zukünftige Entwicklungen. Springer Vieweg Berlin (2015)

    Google Scholar 

  28. Edelmann-Nusser, J., Heller, M., Clement, St, Jordan, A, Vajna, S.: Lightweight Design Optimisation of a Bow Riser in Olympic Archery applying Evolutionary Computing. European Journal of Sports Science 4(2004)3. http://www.humankinetics.com/ejss, (2005)

  29. Ehrlenspiel, K., Meerkamm, H.: Integrierte Produktentwicklung, 6th edition. Carl Hanser Verlag München 2017

    Google Scholar 

  30. Ehrlenspiel, Klaus.: Kostengünstig Konstruieren. Berlin, Springer-Verlag 1985. (Dies wurde mit weiteren Autoren bis zur 7. Auflage 2014 jeweils überarbeitet)

    Google Scholar 

  31. Ehrlenspiel, K.: Integrierte Produkterstellung - Organisation-Methoden-Hilfsmittel. 3. Münchener Kolloquium 1991

    Google Scholar 

  32. Ehrlenspiel, K.: Integrierte Produktentwicklung. Carl Hanser Verlag München (1995)

    Google Scholar 

  33. Eisleben, T., Wiesenberger, P., Dauner, A., Saal, D.: Die Dialektik bei Hegel. Referat im Seminar Wissenschaftstheorie Dialektik, Universität Mainz WS 1998/99. http://www.uni-mainz.de/FB/Philosophie_Paedagogik/agas/content/HA/hegel/index.html, Zugriff am 02. Mai 2013

  34. Ferguson, D.: Therbligs: The Key to Simplifying Work. The Gilbreth Network 2000. http://gilbrethnetwork.tripod.com/therbligs.html, Zugriff am 02. Mai 2013

  35. Ford, D.N., Sterman, J.D.: Overcoming the 90% syndrome: iteration management in concurrent development projects. Concurrent Eng. Res. 11(3), 177–186 (2003)

    Google Scholar 

  36. Frankenberger, E., Badke-Schaub, P., Birkhofer, H. (eds.): Designers—The Key to Successful Product Development. Springer, Berlin (1998)

    Google Scholar 

  37. Freisleben, D.: Gestaltung und Optimierung von Produktentwicklungsprozessen mit einem wissensbasierten Vorgehensmodell. Dissertation Otto-von-Guericke-Universität Magdeburg (2001)

    Google Scholar 

  38. Gatzky, T., Naumann, T.: Industriedesign und Arbeitswissenschaft im Integrierten Produktentwicklungsprozess als eine Profillinie der Fakultät Maschinenbau. In Quaas, W. (Herausgeber): Kolloquium 40 Jahre Arbeitswissenschaft an der Otto-von-Guericke-Universität Magdeburg (2004)

    Google Scholar 

  39. Gerwin, D., Barrowman, N.: An evaluation of research on integrated product development. Manag. Sci. 48(7), 938–953 (2002)

    Google Scholar 

  40. Geidel, H.: Bedeutung der Prozesse bei der Entwicklung komplexer Produkte, dargestellt am Beispiel Triebwerke. In: Köpplinger, H., Vajna, S. (eds.) Tagungsband der European Engineering User Conference (e.e.u.c) München (2000)

    Google Scholar 

  41. Geis, T.; Johner, C.: Usability Engineering als Erfolgsfaktor. Beuth Verlag Berlin (2015)

    Google Scholar 

  42. Geldermann, J.: Multikriterielle Optimierung. http://www.enzyklopaedie-derwirtschaftsinformatik.de/lexikon/technologien-methoden/Operations-Research/Mathematische-Optimierung/Multikriterielle-Optimierung, Accessed on 05.03.2019

  43. Gigerenzer, G.: Bauchentscheidungen. Die Intelligenz des Unbewussten und die Macht der Intuition. Goldmann, München (2008)

    Google Scholar 

  44. Gilbreth, L.M.: The Psychology of Management—The Function of the Mind in Determining, Teaching and Installing Methods of Least Waste. The MacMillan Company, New York (1914)

    Google Scholar 

  45. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading, MA (1989)

    MATH  Google Scholar 

  46. Goldberg, D.E., Smith, R.E., Earickson, J.A.: SGA-C: A C-Language Implementation of a Simple Genetic Algorithm. TCGA Report (1991)

    Google Scholar 

  47. Hansen, F.: Konstruktionswissenschaft Ð Grundlagen und Methoden. Hanser München (1974)

    Google Scholar 

  48. Hartmann, S.: Ein Beitrag zur frühzeitigen Abschätzung der Produktkomplexität und zur Definition einfacher Produkte. Dissertation Otto-von-Guericke Universität Magdeburg (2013)

    Google Scholar 

  49. Hassenzahl, M.: The Interplay of Beauty, Goodness, and Usability in Interactive Products. Human-Computer Interaction, 19(2004)4, pp 319-349

    Google Scholar 

  50. Hatchuel, A., Weil, B.: A new approach to innovative design. An introduction to C-K theory. In: Norell, M. (ed.) ICED03, Research for Practice—Innovation in Products, Processes and Organisations, p. 14 (2003)

    Google Scholar 

  51. Hatchuel, A., Weil, B: C-K design theory: An advanced formulation. Res. Eng. Des. 19(4), 181–192 (2009)

    Google Scholar 

  52. Helfrich, C.: Das Prinzip Einfachheit: Reduzieren Sie die Komplexität. Expert Verlag Renningen (2015)

    Google Scholar 

  53. Hellfritz, H.: Innovationen via Galeriemethode. Königstein/Ts. 1978 (Eigenverlag)

    Google Scholar 

  54. Heymann, M.: Kunst und Wissenschaft in der Technik des 20. Jahrhunderts. Zur Geschichte der Konstruktionswissenschaft. Chronos, Zürich (2005)

    Google Scholar 

  55. Hein, L., Pedersen, F.M., Andreasen, M.M., Olsson, F.: Integrated product development: new potential products. In: Langdon, R. (ed.) Design and Industry, volume 2 (from 6), Proceedings of Design Policy, held at Royal College of Art in London, 20–23 July 1982. The Design Council, London, pp. 86–90 (1984)

    Google Scholar 

  56. Hubka, V.: Theorie der Maschinensysteme. Springer, Berlin (1973)

    Book  Google Scholar 

  57. Hubka, V.: Theorie der Konstruktionsprozesse. Springer, Berlin (1976)

    Book  Google Scholar 

  58. Hubka, V.: Allgemeines Vorgehensmodell des Konstruierens. Schriftenreihe WDK, Heurista Zürich (1980)

    Google Scholar 

  59. Hubka, V.: Theorie technischer Systeme: Grundlagen einer wissenschaftlichen Konstruktionslehre. Springer Vieweg Berlin, Heidelberg (1984)

    Google Scholar 

  60. Hubka, V., Eder, W.E.: Einführung in die Konstruktionswissenschaft. Springer, Berlin (1992)

    Book  Google Scholar 

  61. Leitseite der Industrieanlagen-Betriebsgesellschaft mbH Ottobrunn. http://v-modell.iabg.de. Zugriff am 23. Mai 2013

  62. Kesselring, F.: Technische Kompositionslehre. Springer, Berlin (1954)

    Book  Google Scholar 

  63. Kiewert, A.: Der Konstruktionsprozeß als Rückkopplung - Formalisierung von Teilaspekten des Konstruktionsprozesses. In: Hubka, V. (ed.) Proceedings of the International Conference on Engineering Design (ICED 91) Heurista Zürich, pp. 70–76 (1991)

    Google Scholar 

  64. Kittel, K., Vajna, S.: Development of an evolutionary design method. In: Leifer, L., Skogstad, Ph. (eds.) Proceedings of ICED 09”, vol. 6, Design Methods and Tools, Part 2, pp. 147–156 (2009)

    Google Scholar 

  65. Koch, M., Hochmuth, R.: Mehrkörpersimulation unter Berücksichtigung nicht-idealer Gelenke und Integration dieser in das Konstruktionssystem mfk. In: Meerkamm, H. (ed.) Design for X - Beiträge zum Symposium (2001)

    Google Scholar 

  66. Koller, R.: Konstruktionsmethode für den Maschinen-Geräte- und Apparatebau. Springer, Berlin (1976)

    Book  Google Scholar 

  67. Lindemann, U., Bichlmaier, C., Stetter, R., Viertlböck, M.: Verbesserte Umsetzung der Integrierten Produktentwicklung in der industriellen Anwendung. Konstruktion 52, 9 (1999)

    Google Scholar 

  68. Lehrer, J.: Wie wir entscheiden. Das erfolgreiche Zusammenspiel von Kopf und Bauch. Piper, München (2009)

    Google Scholar 

  69. Maeda, J.: The laws of simplicity. MIT Press Cambridge (2006)

    Google Scholar 

  70. Le Masson, P., Weil, B., Hatchuel, A.: Design Theory—Methods and Organization for Innovation. Springer International Publishing AG. ISBN 978-3-319-50277-9 (2017)

    Google Scholar 

  71. Meerkamm, H.: Integrierte Produktentwicklung im Spannungsfeld von Kosten-, Zeit- und Qualitätsmanagement. VDI-Bericht 1136 VDI-Verlag Düsseldorf 1994, S. 1–13

    Google Scholar 

  72. Meerkamm, H., Paetzold, K.: Integrierte Produktentwicklung (IPE) – Philosophie, Konzept und Umsetzung. In: Institut für Maschinenelemente und Konstruktionstechnik (Herausgeber): Festschrift zum Ehrenkolloquium anlässlich der Emeritierungen von Univ.-Prof. Dr.-Ing. habil. Dr. h.c. Günter Höhne und Univ.-Prof. Dr.-Ing. habil. Hans-Jürgen Schorcht, Ilmenau 2005

    Google Scholar 

  73. Miller, G.A., Galanter, E., Pribram, K.H.: Strategien des Handelns. Pläne und Strukturen des Verhaltens (2. Auflage). Klett-Cotta Stuttgart 1991

    Google Scholar 

  74. Miles, L.D.: Techniques of Value Analysis and Engineering. McGraw-Hill, New York (1972)

    Google Scholar 

  75. Müller, J.: Grundlagen der systematischen Heuristik. Dietz-Verlag, Berlin (1970)

    Google Scholar 

  76. Müller, J.: Arbeitsmethoden der Technikwissenschaften. Springer, Berlin (1990)

    Book  Google Scholar 

  77. Naumann, T.: Adaptive SYSTEM MANAGEMENT. Ein Ansatz für die Planung und Steuerung von Produktentwicklungsprozessen. Dissertation Otto-von-Guericke-Universität Magdeburg (2005)

    Google Scholar 

  78. Norell, M.: Managing integrated product development. In: Mortensen, N., Sigurjónsson, J. (eds.) Critical Enthusiasm—A festschrift for Mogens Myrup Andreasen. DTU (1999)

    Google Scholar 

  79. Norman, D.: The design of everyday things. Basic Books New York (2013)

    Google Scholar 

  80. Olbrich, R.; Battenfeld, D.: Variantenvielfalt und Komplexität — kostenorientierte vs. marktorientierte Sicht. In Journal für Marketing, 44(2005)3, pp. 161-173

    Google Scholar 

  81. Olsson, F.: Systematisk Konstruktion (Systematic Engineering Design), Dissertation am Department of Machine Design, Lund Institute of Technology at Lund University (1976)

    Google Scholar 

  82. Olsson, F.: Machine design procedure related to product development procedure. In: Hubka, V. (ed.) Review of Design Methodology, ICED 81 Rom. Schriftenreihe WDK 5, 1981. Seiten 229–238 (1981)

    Google Scholar 

  83. Olsson, F.: Integrerad Produktutveckling - Arbetsmodel (in Schwedisch). Series 21 Produktutveckling. Sveriges Mekanförbundet, Stockholm, Schweden (1985)

    Google Scholar 

  84. Ottosson, S.: Dynamic product development—findings from participating action research in a fast new product development process. J. Eng. Des. 7(2), 151–169 (1996)

    Google Scholar 

  85. Ottosson, S.: Planetary organizations. Tech. Int. J. Technol. Innov. Entrepreneurship 19(2), 81–86 (1998)

    Google Scholar 

  86. Ottosson, S.: Participation action research—a key to improved knowledge of management. Tech. Int. J. Technol. Innov. Entrepreneurship 23, 87–94 (2003)

    Google Scholar 

  87. Ottosson, S.: The development and research of DPD—a historical review. In: Rohatynski, R. (Herausgeber) Proceedings of the Fourth International Seminar and Workshop on Engineering Design in Integrated Product Development, Zielona Góra (Polen) (2004)

    Google Scholar 

  88. Ottosson, S.: Frontline Innovation Management (zweite Auflage). Tervix Göteborg (2013)

    Google Scholar 

  89. Otto, K.N.; Wood, K.L.: Product Design: Techniques in Reengineering and New Product Development. Pearson/Prentice Hall (2001)

    Google Scholar 

  90. Ovtcharova, J., Weber, C., Vajna, S., Müller, U.: Neue Perspektiven für die Feature-basierte Modellierung. VDI-Z 140(3), 34–37 (1997)

    Google Scholar 

  91. Pahl, G., Beitz, W.: Konstruktionslehre. Springer, Berlin (1977)

    Book  Google Scholar 

  92. Pahl, G., Beitz, W.: Konstruktionslehre. Springer Heidelberg Berlin (1988)

    Google Scholar 

  93. Pahl, G.; Beitz, W.; Feldhusen, J.; Grote, K.-H.: Konstruktionslehre. Grundlagen erfolgreicher Produktentwicklung; Methoden und Anwendung. Springer Heidelberg, 2007

    Google Scholar 

  94. Glossar der Product Development and Management Association (Chicago, USA). www.pdma.org, www.pdma.org/npd_glossary.cfm, Zugriff am 18. Mai 2011

  95. Pilz, F.; Vajna, S.; Schabacker, M.: Bewertbarkeit unscharfer Mengen am Beispiel der Eigenschaft Produkteinfachheit. In Proceedings of the 29th Design for X-Symposium (2018)

    Google Scholar 

  96. Preim, B.; Dachselt, R.: Interaktive Systeme: Band 1. Springer Vieweg Berlin, Heidelberg (2015)

    Google Scholar 

  97. Pulm, U.: Eine systemtheoretische Betrachtung der Produktentwicklung. Dissertation Technische Universität München (2004)

    Google Scholar 

  98. Quirmbach, S.: Suchmaschinen: User Experience, Usability und nutzerzentrierte Website-Gestaltung. Springer Vieweg. Berlin Heidelberg (2013)

    Google Scholar 

  99. Rechenberg, I.: Evolutionsstrategie – Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Friedrich Frommann Verlag, Stuttgart (1973)

    Google Scholar 

  100. Robier, J.: Das einfache und emotionale Kauferlebnis: Mit Usability, User Experience und Customer Experience anspruchsvolle Kunden gewinnen. Springer Vieweg Wiesbaden (2016)

    Google Scholar 

  101. Rodenacker, W.G.: Methodisches Konstruieren. Springer, Berlin (1970)

    Book  Google Scholar 

  102. Ropohl, G.: Systemtechnik – Grundlagen und Anwendung. Hanser, München (1975)

    Google Scholar 

  103. Roth, K.: Konstruieren mit Konstruktionskatalogen. Springe, Berlin (1982)

    Book  Google Scholar 

  104. Schlingensiepen, J.: Korporative IT-Systemarchitektur zur Unterstützung unternehmens-übergreifender kooperativer Produktentwicklung. In: Vajna, S. (Herausgeber): Integrierte Produktentwicklung, Band 14 Magdeburg (2008)

    Google Scholar 

  105. Schneider, B.: Design – eine Einführung: Entwurf im sozialen, kulturellen und wirtschaftlichen Kontext. De Gruyter Basel (2005)

    Google Scholar 

  106. Schrage, M.: Serious Play—How the World’s Best Companies Simulate to Innovate. Harvard Business School Press, Boston (2000)

    Google Scholar 

  107. Schuh, G.: Produktkomplexität managen: Strategien; Methoden; Tools. Carl HanserVerlag München (2014)

    Google Scholar 

  108. Seeger, H.: Design technischer Produkte, Produktprogramme und -systeme. Springer Vieweg Berlin, Heidelberg (2005)

    Google Scholar 

  109. Simon, H.A.: The Sciences of the Artificial, 3rd edn. MIT Press, Cambridge (USA) (1997)

    Google Scholar 

  110. Smedberg, M.: Om stridens grunder – fran Waterloo till kryssningsrobotar (Über die Gründe zum Streit – von Waterloo bis zu Marschflugkörpern; in Schwedisch). Page One Publishing Stockholm (1994)

    Google Scholar 

  111. Ullman, D.G.: The Mechanical Design Process. McGraw-Hill New York (1992a)

    Google Scholar 

  112. Ullman, D.G.: A taxonomy for mechanical design. Res. Eng. Des. 3(3), 179–189 (1992b)

    Google Scholar 

  113. Urakami, J.; Vajna, S.: Human Centricity in Integrated Design Engineering. In Proceedings of the 15th International Design Conference. Dubrovnik, 2018, pp. 679–690

    Google Scholar 

  114. Vajna, S., Burchardt, C.: Integrierte Produktentwicklung. Konstruktion 51(4), 45–50 (1998)

    Google Scholar 

  115. Vajna, S., Clement, S., Jordan, A.: Autogenetic design theory: an approach to optimise both the design process and the product. In: Proceedings of the 2002 ASME Design Engineering Technical Conferences September 29–October 2, Montreal (Quebec, Canada) (2002)

    Google Scholar 

  116. Vajna, S., Bercsey, T., Clement, St., Jordan, A.: The autogenetic design theory: an evolutionary view of the design process. J. Eng. Des. 16(4), 423–440 (2005)

    Google Scholar 

  117. Vajna, S., Clement, St., Jordan, A., Bercsey, T.: The autogenetic design theory: an evolutionary view of the design process. J. Eng. Des. 16(4), 423–444 (2005)

    Google Scholar 

  118. VDI-Richtlinie 2206: Entwicklungsmethodik für mechatronische Systeme. Beuth Verlag, Berlin (2004)

    Google Scholar 

  119. VDI Guideline 2218: Feature Technology, within the series Information technology in product development. VDI Düsseldorf (2003)

    Google Scholar 

  120. VDI Guideline 2221 Sheet 1: Entwicklung technischer Produkte und Systeme – Modell der Produktentwicklung. VDI, Düsseldorf, 2019

    Google Scholar 

  121. VDI Guideline 2221: Methodik zum Entwickeln und Konstruieren technischer Systeme und Produkte. Beuth Verlag, Berlin (1993)

    Google Scholar 

  122. VDI-Guideline 2222, Sheet 1: Konstruktionsmethodik - Methodisches Entwickeln von Lösungsprinzipien. Beuth Verlag, Berlin (1997)

    Google Scholar 

  123. VDI Guideline 2800 Sheet1: Wertanalyse/Value analysis. Beuth-Verlag, Berlin (2010)

    Google Scholar 

  124. Vajna, S., Weber, Ch., Zeman, K., Hehenberger, P., Gerhard, D., Wartzack, S.: CAx für Ingenieure, eine praxisbezogene Einführung (dritte neu bearbeitete Auflage). Springer, Berlin (2018)

    Book  Google Scholar 

  125. Wach, J.-J.: Problemspezifische Hilfsmittel für die Integrierte Produktentwicklung, Konstruktionstechnik. Technische Universität München, Carl Hanser Verlag, München Wien (1993)

    Google Scholar 

  126. Wallace, K. (Herausgeber) Engineering Design 2. Auflage der englischen Ausgabe der “Konstruktionslehre” von G. Pahl, W. Beitz, übersetzt von K. Wallace, L. Blessing, F. Bauert, bearbeitet von K. Wallace

    Google Scholar 

  127. Watkins, T.A., Ochs, J.B., Boothe, B.W.: Integrating design arts, engineering and business curricula through multidisciplinary product design projects. In: Proceeding from the Second Annual NCIIA Conference, Washington, März (1998)

    Google Scholar 

  128. Wartzack, S.: Predicitive Engineering—Assistenzsystem zur multikriteriellen Analyse alternative Produktkonzepte. Dissertation Universität Erlangen-Nürnberg (2000)

    Google Scholar 

  129. Wegner, B.: Autogenetische Konstruktionstheorie – ein Beitrag für eine erweiterte Konstruktionstheorie auf der Basis Evolutionärer Algorithmen. Dissertation Universität Magdeburg (1999)

    Google Scholar 

  130. Wiendahl, H.-P.: Funktionsbetrachtungen technischer Gebilde - Ein Hilfsmittel zur Auftragsabwicklung in der Maschinenbauindustrie. Dissertation RWTH Aachen (1970)

    Google Scholar 

  131. Wögerbauer, H.: Die Technik des Konstruierens. Oldenbourg-Verlag München (1943)

    Google Scholar 

  132. Womack, J. P.; Jones, D. T.; Roos, D.: Die zweite Revolution in der Autoindustrie: Konsequenzen aus der weltw eiten Studie aus dem Massachusetts Institute of Technology. Campus-Verlag Frankfurt am Main (1992)

    Google Scholar 

  133. Wünsch, A.: Effizienter Einsatz von Optimierungsmethoden in der Produktentwicklung durch dynamische Parallelisierung. Dissertation Universität Magdeburg (2017)

    Google Scholar 

  134. Wünsch, A.; Pilz, F.; Vajna, S.: Morphix: An Evolutionary Way to Support Conceptual Design. In Proceedings of the 14th International Design Conference (DESIGN 2016). Dubrovnik 2016, pp. 769–778

    Google Scholar 

  135. Zeh, N.: Erfolgsfaktor Produktdesign. Dissertation Universität zu Köln (2009)

    Google Scholar 

  136. Zwicky, F.: Entdecken, Erfinden, Forschen im Morphologischen Weltbild. Droemer Knaur, München (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sándor Vajna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vajna, S. et al. (2020). Models and Procedures of Product Development. In: Vajna, S. (eds) Integrated Design Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-19357-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19357-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19356-0

  • Online ISBN: 978-3-030-19357-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics