Skip to main content

Fulfilment Attributes

  • Chapter
  • First Online:
Integrated Design Engineering

Abstract

In this chapter, the attributes safety, reliability and quality are presented in more detail, with which the fulfilment of the requirements can be assessed by the product attributes. The interaction of the three attributes is described in Sects. 3.2.2 and 3.4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This is partly due to the fact that potential users of the product do not obtain sufficient information from the instruction manual, because it is often incomplete and insufficiently formulated.

  2. 2.

    VDI Guideline 3542 Sheet 4: “Robustness [means] that a system is forgiving of operating errors and largely insensitive to deviations from the specified operating conditions.” [VDI-3542]

  3. 3.

    Directive 85/374 EEC, Art. 11: “In order to be able to provide evidence of exoneration in possible product liability cases, it must be possible to trace back the state of design and the associated modifications for at least 10 years after the product has been placed on the market” [EEC-1985].

  4. 4.

    For example, ISO 26262 for the safety of motor vehicles [ISO-26262] and ISO 13849 for the safety of Machinery [ISO-13849].

  5. 5.

    Here, Hubka goes further, describing reliability as part of the operating characteristics of a system that is on the same level as operational safety, lifetime, energy consumption, space consumption and maintainability [Hubk-1984].

  6. 6.

    R(t) derived from “Reliability”

  7. 7.

    The fatigue strength range in the Wöhler diagram is characterized by the inclined fatigue strength line, in which a load leads to failure of the product after a defined number of finite cycles. The following applies: The higher the load, the more likely it is that failure will occur [Haib-2006].

  8. 8.

    Waloddi Weibull (1887–1979), professor at KTH Stockholm, developed the distribution function named after him in the 1930s. He published his research results in 1951 under the title “A statistical distribution function of wide applicability” in the Journal of Mechanics (9)1951, page 293–297.

  9. 9.

    The following conditions shall be attached to a random sample: The test specimens are randomly taken from the population and the probability with which a test specimen enters the sample can be specified [SaHe-2006].

  10. 10.

    Shell-shaped material breakout on the surface of the tooth flank of a gearwheel caused by alternating stresses. English term: Pitting

  11. 11.

    A load-time or a load-displacement record continuously records the behaviour of a variable (usually a load) over the distance travelled or over time for a specified duration.

  12. 12.

    Characteristics and properties as defined by Weber [Webe-2005], according to which characteristics can be directly influenced by the product developer (e.g. dimensions and material), while properties result from the interaction of characteristics (e.g. functions and usability)

  13. 13.

    This field will not be discussed in detail here. Relevant literature is for example [Masi-2007, GeKo-2008], the corresponding standard is DIN EN ISO 9000 Quality Management [DIN-9000].

  14. 14.

    In 1943, Kaoru Ishikawa (1915–1989) developed what is often referred to as a “herringbone slide-gram” because of its shape, in order to visualize possible causes that can influence a problem in a structured arrangement.

  15. 15.

    Captain Edward A. Murphy (1908–1990) worked as an engineer in the American Air Force. During tests to measure the maximum acceleration of gravity a human being can withstand, he formulated the law later named after him in about 1949 on the basis of erroneous measurements in which errors had occurred due to human negligence and incapacity.

  16. 16.

    Very detailed descriptions of the QFD and its further possibilities (which are not discussed here) can be found at Hehenberger [Hehe-2011] and Saatweber [Saat-2016].

References

  1. Bertsche, B., Dazer, M., Henß, M.: Handbuch Konstruktion, Betriebsfestigkeit und Systemzuverlässigkeit, 2nd edn. Hanser-Verlag, München (2018)

    Google Scholar 

  2. Bertsche, B., Lechner, G.: Zuverlässigkeit im Fahrzeug- und Maschinenbau, 3rd edn. Springer-Verlag, Heidelberg (2004)

    Google Scholar 

  3. Bergmann, J., Thumser, R.: Synthetische Wöhlerlinien für Eisenwerkstoffe. Verlag und Vertriebsgesellschaft mbH, Düsseldorf (1999)

    Google Scholar 

  4. Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit (Hrsg.): Sicherheitskriterien für Kernkraftwerke. Revision D (2009)

    Google Scholar 

  5. Bromba, M.: Was ist Sicherheit? - Versuch einer Definition. http://www.bromba.com/knowhow/sicherh.htm, Zugriff am 15 Oct 2019

  6. Dazer, M.: Zuverlässigkeitstestplanung mit Berücksichtigung von Vorwissen aus stochastischen Lebensdauerberechnungen. Dissertation, Stuttgart: Berichte aus dem Institut für Maschinenelemente (2019)

    Google Scholar 

  7. Dazer, M., Bräutigam, D., Leopold, T., Bertsche, B.: Optimal planning of reliability life tests considering prior knowledge. Proc. RAMS 2018, 22 Jan to 25 Jan 2018, Reno, USA, https://doi.org/10.1109/ram.2018.8463098

  8. DIN ISO 31000, Allgemeine Leitsätze für das sicherheitsgerechte Gestalten von Produkten. Stand: Mai 2011. Beuth-Verlag Berlin (2011)

    Google Scholar 

  9. DIN 40041, Zuverlässigkeit elektrischer Bauelemente, as of December 1990. Beuth Berlin (1990)

    Google Scholar 

  10. Deutsches Institut für Normung (DIN): DIN 60300 – Zuverlässigkeitsmanagement – Teil 1: Zuverlässigkeitsmanagementsysteme (IEC 60300-1), Berlin: Beuth-Verlag, 2004

    Google Scholar 

  11. DIN EN ISO 9000, Qualitätsmanagement – Grundlagen und Begriffe, as of December 2005. Beuth Berlin (2005)

    Google Scholar 

  12. Council Directive 85/374/EEC of 25 July 1985: Liability for Defective Products

    Google Scholar 

  13. Ehrlenspiel, K., Meerkamm, H.: Integrierte Produktentwicklung, 6th revised and enhanced edition. Hanser München (2017)

    Google Scholar 

  14. Europäische Kommission (Hsg.): Richtlinie 2001/95/EC, Artikel 12, ABI L22 (2009)

    Google Scholar 

  15. Geiger, W., Kotte, W.: Handbuch Qualität - Grundlagen und Elemente des Qualitätsmanagements: Systeme – Perspektiven. 5. Auflage. Springer – Vieweg (2008)

    Google Scholar 

  16. Hales, C., Gooch, S.: Managing Engineering Design, 2nd edn. Springer, London (2004)

    Book  Google Scholar 

  17. Haibach, E.: Betriebsfestigkeit. Springer, Verfahren und Daten zur Bauteilberechnung, Berlin (2006)

    Google Scholar 

  18. Herzig, T., Dazer, M., Bertsche, B.: Zuverlässigkeitsabsicherung ressourcen-schonender Produkte durch effiziente Erprobungsplanung. Stuttgarter Symposium für Produktentwicklung 16 May—17 May 2019, Stuttgart (in print)

    Google Scholar 

  19. Hehenberger, P.: Computerunterstützte Fertigung – Eine kompakte Einführung. Springer, Heidelberg (2011)

    Book  Google Scholar 

  20. Heidinger, F., Hildebrandt, T. et al.: Simulation based powernet analysis regarding efficiency and reliability—truck battery analysis as an example. 8. Internationaler VDI-Kongress: MarketPlace 2018, 16 Oct to 17 Oct 2018, Baden-Baden, Deutschland

    Google Scholar 

  21. Herzig, T. et al.: Cost- and Time-effective Planning of Accelerated Reliability Demonstration Tests—A new Approach of comparing the Expenditure of Success Run and End-of-Life Tests. RAMS 2019, 28 Jan to 31 Jan 2019, Orlando, USA

    Google Scholar 

  22. Hering, E., Triemel, J., Blank, H.P. (Herausgeber): Qualitätssicherung für Ingenieure. VDI-Verlag Düsseldorf (1996)

    Google Scholar 

  23. Hubka, V.: Theorie Technischer Systeme – Grundlagen einer wissenschaftlichen Konstrukti-onslehre. Springer, Berlin Heidelberg (1984)

    Google Scholar 

  24. International Electrotechnical Commission (IEC): IEC61508: Funktionale Sicherheit sicherheitsbezogener elektrischer/elektronischer/programmierbarer elektronischer Systeme

    Google Scholar 

  25. Internationale Organisation für Normung (ISO): ISO13849: Safety of machinery

    Google Scholar 

  26. Internationale Organisation für Normung (ISO): ISO26262: Road vehicles—Functional safety

    Google Scholar 

  27. Kececioglu, D.B.: Reliability Engineering Handbook, vol. 2, 4th edn. Prentice-Hall, New Jersey (1991)

    Google Scholar 

  28. Kerntechnischer Ausschuss (KTA): Sicherheitstechnische Regel des KTA 3201.1: Komponenten des Primärkreises von Leichtwasserreaktoren. Teil 1: Werkstoffe und Erzeugnisformen, Salzgitter, KTA-Handbuch (2016)

    Google Scholar 

  29. Krause, D., Gebhardt, N., Greve, E., Oltmann, J., Schwenke, J., Spallek, J.: New trends in the design methodology of modularization. In: Vajna, S. (ed.) Proccedings of the 11th International Workshop on Integrated Design Engineering, Magdeburg 2017, Seiten, pp. 49–60

    Google Scholar 

  30. Lucan, K., Dazer, M., Hintz, K., Bertsche, B.: Effect of Competing Failure Modes on the System Reliability Estimation. RAMS 2019, 28 Jan to 31 Jan 2019, Orlando, USA

    Google Scholar 

  31. Lucan, K., Dazer, M., Waller, J., Bertsche, B.: Analysis of the Weibull Estimation for Competing Failure Modes. Proc. RAMS 2018, 22 Jan to 25 Jan 2018, Reno, USA, https://doi.org/10.1109/ram.2018.8463053

  32. Lucan, K., Henß, M., Bertsche, B.: Working group cv-brakes—procedure for a commercial vehicle brakes’ standard. Proceeding of the 2017 Eurobrake Conference (2017)

    Google Scholar 

  33. Masing, W.: Handbuch Qualitätsmanagement, 5. Auflage. Herausgegeben von T. Pfeiffer und R. Schmitt. Hanser München (2007)

    Google Scholar 

  34. Meeker, W.Q., Escobar, L.A.: Statistical methods for reliability data. Wiley, New York, NY (1998)

    MATH  Google Scholar 

  35. Meyna, A., Peters, O.: Handbuch der Sicherheitstechnik, Band 1. Hanser München (1984)

    Google Scholar 

  36. Müller, J.R.: Die formalisierte Terminologie der Verlässlichkeit technischer Systeme. Springer Vieweg, Berlin (2015)

    Book  Google Scholar 

  37. Naunheimer, H. et. al.: Fahrzeuggetriebe, Grundlagen, Auswahl, Auslegung und Konstruktion. 3. Auflage (2019, in print)

    Google Scholar 

  38. Nelson, W.B.: Applied life data analysis. Wiley-Interscience, Hoboken, NJ (2005)

    MATH  Google Scholar 

  39. Radaj, D.: Ermüdungsfestigkeit. Birkhäuser - Verlag für Architektur, Grundlagen für Ingenieure, Basel (2007)

    Google Scholar 

  40. Rennert, R., et al.: Rechnerischer Festigkeitsnachweis für Maschinenbauteile. VDMA Verlag GmbH, Frankfurt am Main (2012)

    Google Scholar 

  41. Saatweber, J.: Produkte entwickeln mit Quality Function Deployment. In: Lindemann, U. (Hsg.) Handbuch Produktentwicklung. Hanser 2016, Seiten 629–671

    Google Scholar 

  42. Sachs, L., Hedderich, J.: Angewandte Statistik. 12, vollst. neu bearb. Aufl., Springer, Berlin, Heidelberg (2006)

    Google Scholar 

  43. Storga, M., Skec, S., Marjanovic, D.: Failure identification and analysis methods for engineering design. In: Vajna, S. (ed.) Proccedings of the 11th International Workshop on Integrated Design Engineering, Magdeburg 2017, Seiten, pp. 135–143

    Google Scholar 

  44. Timoshenko, S.P.: Strength of materials, 3rd ed., repr. CBS Publishers & Distributors, New Delhi (2002)

    Google Scholar 

  45. U.S. Department of Defense (Hrsg.) MIL-HDBK-217F Notice 2—Reliability Prediction Of Electronic Equipment (1995)

    Google Scholar 

  46. Verband der Automobilindustrie e.V.: Qualitätsmanagement in der Automobilindustrie. Zuverlässigkeitsabsicherung bei Automobilherstellern und Lieferanten. 4. Auflage. Frankfurt am Main: VDA-QMC (2016)

    Google Scholar 

  47. VDI-Richtlinie 3542 Blatt 4 (zurückgezogen): Sicherheitstechnische Begriffe für Automatisierungssysteme - Zuverlässigkeit und Sicherheit komplexer Systeme (Begriffe). VDI-Düsseldorf (2015)

    Google Scholar 

  48. Verein Deutscher Ingenieure (VDI): VDI-Richtlinie 4003 – Zuverlässigkeitsmanagement, Düsseldorf: VDI-Verlage (2007)

    Google Scholar 

  49. Wahrig, G.: Deutsches Wörterbuch. Bertelsmann Lexikon-Verlag Gütersloh (1978)

    Google Scholar 

  50. Webster’s New Universal Unabridged Dictionary: Simon and Schuster, 2nd edn. New York (1983)

    Google Scholar 

  51. Weber, C.: CPM/PDD—An extended theoretical approach to modelling products and product development processes, 2nd German-Israeli symposium on advances in methods and systems for development of products and processes, Berlin 2005. In: Bley, H., Jansen, H., Krause, F.-L., Shpitalni, M. (Hrsg.) Proceedings of the 2nd German-Israeli Symposium, Fraunhofer-IRB-Verlag, Stuttgart, S. 159–179 (2005)

    Google Scholar 

  52. Weibull, W.: A Statistical Distribution Function of Wide Applicability. Journal of Applied Mechanics, S. 293–297 (1951)

    Google Scholar 

  53. Yang, G.: Life cycle reliability engineering. Wiley, Hoboken (2007) https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31985L0374:en:HTML (Zugriff am 16 Dec 2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Dazer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dazer, M., Bertsche, B., Vajna, S. (2020). Fulfilment Attributes. In: Vajna, S. (eds) Integrated Design Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-19357-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19357-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19356-0

  • Online ISBN: 978-3-030-19357-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics