Skip to main content

How Plants Absorb Nutrients from the Soil

Abstract

The three processes that are responsible for nutrients from the soil reach the plant root system: diffusion, mass transport, and root interception. They are here presented and discussed in detail. The influence of soil physical conditions on the absorption of nutrients is shown for soil water content, temperature, soil aeration, and root development. Some examples are given for ion movement, with the solution of differential equations. Absorbtion of nutrients by excised root are also discussed. Nutrient balances in agricultural systems are illustrated with the example of nitrogen. The use of isotopes in soil fertility and plant nutrition studies is also presented.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-19322-5_16
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-19322-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Hardcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 16.1
Fig. 16.2
Fig. 16.3
Fig. 16.4
Fig. 16.5

References

  • Barber SA, Olsen RA (1968) Fertilizer use on corn. In: Nelson LB, Mcvickar MH, Munson RD, Seatz LF, Tisdale SL, White WC (eds) Changing patterns in fertilizer use. Soil Science Society of America, Madison, WI, pp 163–188

    Google Scholar 

  • Basanta MV, Dourado-Neto D, Reichardt K, Bacchi OOS, Oliveira JCM, Trivelin PCO, Timm LC, Tominaga TT, Correchel V, Cassaro FAM, Pires LF, Macedo JR (2003) Quantifying management effects on fertilizer and trash nitrogen recovery in a sugarcane crop grown in Brazil. Geoderma 116:235–248

    CrossRef  CAS  Google Scholar 

  • Bortolotto RP, Bruno IP, Dourado-Neto D, Timm LC, Silva AN, Reichardt K (2011) Soil profile internal drainage for a central pivot fertigated coffee crop. Rev Ceres 58:723–728

    CrossRef  Google Scholar 

  • Bruno IP, Unkovich MJ, Bortolotto RP, Bacchi OOS, Dourado-Neto D, Reichardt K (2011) Fertilizer nitrogen in fertigated coffee crop: absorption changes in plant compartments over time. Field Crop Res 124:369–377

    CrossRef  Google Scholar 

  • Bruno IP, Reichardt K, Bortolotto RP, Pinto VM, Bacchi OOS, Dourado-Neto D, Unkovich MJ (2015) Nitrogen balance and fertigation use efficiency in a field coffee crop. J Plant Nutr 38:2055–2076

    CrossRef  CAS  Google Scholar 

  • Cerri CC, Volkoff B, Andreux F (1991) Nature and behavior of organic matter in soils under natural forest, and after deforestation, burning and cultivation, near Manaus. Forest Ecol Manag 38:247–257

    CrossRef  Google Scholar 

  • Cervellini A, Ruschel AP, Matsui E, Salati E, Zagatto EAG, Ferreyra HH, Krug FJ, Bergamin Filho H, Reichardt K, Meirelles NMF, Libardi PL, Victoria RL, Saito SMT, Nascimento Filho VF (1980) Fate of 15N applied as ammonium sulphate to a bean crop. In: Soil nitrogen as fertilizer or pollutant. International Atomic Energy Agency, Vienna, pp 23–34

    Google Scholar 

  • Dourado-Neto D, Powlson D, Bakar RA et al (2010) Multiseason recoveries of organic and inorganic nitrogen-15 in tropical cropping systems. Soil Sci Soc Am J 74:139–152

    CrossRef  CAS  Google Scholar 

  • Epstein E (1972) Mineral nutrition of plants: principles and perspectives. John Wiley & Sons, New York, NY

    Google Scholar 

  • Fenilli TAB, Reichardt K, Dourado-Neto D, Trivelin PCO, Favarin JL, Costa FMP, Bacchi OOS (2007a) Growth, development and fertilizer N-15 recovery by the coffee plant. Sci Agric 64:541–547

    CrossRef  CAS  Google Scholar 

  • Fenilli TAB, Reichardt K, Trivelin PCO, Favarin JL (2007b) Volatization losses of ammonia from fertilizer and its reabsorbtion by coffee plants. Commun Soil Sci Plant Anal 38:1741–1751

    CrossRef  CAS  Google Scholar 

  • Fenilli TAB, Reichardt K, Bacchi OOS, Trivelin PCO, Dourado-Neto D (2007c) The 15N isotope to evaluate fertilizer nitrogen absorbtion efficiency by the coffee plant. An Acad Bras Cienc 79:767–776

    CrossRef  CAS  Google Scholar 

  • Hardarson G (1990) Use of nuclear techniques in studies of soil-plant relationships. International Atomic Energy Agency, Vienna

    Google Scholar 

  • Havlin JL, Tisdale SL, Nelson WL, Beaton JD (2014) Soil fertility and fertilizers, 8th edn. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • IAEA (2001) Use of isotope and radiation methods in soil and water management and crop nutrition. International Atomic Energy Agency, Vienna

    Google Scholar 

  • Knoll HA, Brady NC, Lathwell DJ (1964) Effect of soil temperature and phosphorus fertilization on the growth and phosphorus content of corn. Agron J 56:145–147

    CrossRef  CAS  Google Scholar 

  • Kutilek M, Nielsen DR (2010) Facts about global warming. Catena Verlag, Cremlingen-Destedt

    Google Scholar 

  • L’Annunziata MF (ed) (1998) Handbook of radioactivity analysis. Academic Press, San Diego, CA

    Google Scholar 

  • Libardi PL, Reichardt K (1978) Destino da uréia aplicada a um solo tropical. Rev Bras Ciênc Solo 2:34–40

    Google Scholar 

  • Matsui E, Salati E, Friedman I, Brinkman WLF (1976) Isotopic hydrology in Amazonia. 2. Relative discharges of the Negro and Solimões rivers through 18O concentrations. Water Resour Res 12:781–785

    CrossRef  Google Scholar 

  • Meirelles NMF, Libardi PL, Reichardt K (1980) Absorção e lixiviação de nitrogênio em cultura de feijão. Rev Bras Ciênc Solo 4:83–88

    CAS  Google Scholar 

  • Olsen SR, Kemper WD (1968) Movement of nutrients to plant roots. Adv Agron 20:91–151

    CrossRef  CAS  Google Scholar 

  • Olsen SR, Kemper WD, van Schaik JC (1965) Self-diffusion coefficients of phosphorus in soil measured by transient and steady-state methods. Soil Sci Soc Am Proc 29:154–158

    CrossRef  CAS  Google Scholar 

  • Partil AS, King KM, Miller MH (1963) Self-diffusion of rubidium as influenced by soil moisture tension. Can J Soil Sci 43:44–51

    CrossRef  Google Scholar 

  • Pires LF (2018) Soil analysis using nuclear techniques: a literature review of the gamma ray attenuation method. Soil Tillage Res 184:216–234

    CrossRef  Google Scholar 

  • Porter LK, Kemper WD, Jackson RD, Stewart BA (1960) Chloride diffusion in soils as influenced by moisture content. Soil Sci Soc Am Proc 24:460–463

    CrossRef  CAS  Google Scholar 

  • Reichardt K (1976) Noções gerais sobre solo. In: Malavolta E (ed) Manual de química agrícola. Agronômica Ceres, Piracicaba, pp 121–157

    Google Scholar 

  • Reichardt K (1980) Physico-chemical conditions and development of roots. In: Symposium on Root/Soil System. Instituto Agronômico do Paraná; Empresa Brasileira de Pesquisa Agropecuária; Conselho Nacional de Desenvolvimento Científico e Tecnológico, Londrina, pp 103–114

    Google Scholar 

  • Reichardt K (1990) Soil spatial variability and symbiotic nitrogen fixation by legumes. Soil Sci 150:579–587

    CrossRef  CAS  Google Scholar 

  • Reichardt K, Libardi PL, Meirelles NMF, Ferreyra FF, Zagatto EAG, Matsui E (1977) Extração e análise de nitratos em solução do solo. Rev Bras Ciênc Solo 1:130–132

    CAS  Google Scholar 

  • Reichardt K, Libardi PL, Victoria RL, Viegas GP (1979) Dinâmica do nitrogênio em solo cultivado com milho. Rev Bras Ciênc Solo 3:17–20

    Google Scholar 

  • Reichardt K, Libardi PL, Urquiaga SS (1982) The fate of fertilizer nitrogen in soil-plant systems with emphasis on the tropics. International Atomic Energy Agency, Vienna, pp 277–289

    Google Scholar 

  • Rosenzweig C, Hillel D (1998) Climate change and the global harvest. Oxford University Press, New York, NY

    Google Scholar 

  • Sposito G (1989) The chemistry of soils. Oxford University Press, New York, NY

    Google Scholar 

  • Vose PB (1980) Introduction to nuclear techniques in agronomy and plant biology. Pergamon Press, Oxford

    Google Scholar 

  • Walker JM (1969) One-degree increments in soil temperatures affect maize seedling behavior. Soil Sci Soc Am Proc 33:729–736

    CrossRef  Google Scholar 

  • Yamada T, Igue K, Mizilli O, Usherwood NR (1982) Potássio na agricultura brasileira. Instituto da Potassa e Fosfato, Instituto Internacional da Potassa, Instituto Agronômico do Paraná, Londrina

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Reichardt, K., Timm, L.C. (2020). How Plants Absorb Nutrients from the Soil. In: Soil, Plant and Atmosphere. Springer, Cham. https://doi.org/10.1007/978-3-030-19322-5_16

Download citation