Skip to main content

Co-Designing the Computational Model and the Computing Substrate

(Invited Paper)

  • Conference paper
  • First Online:
Unconventional Computation and Natural Computation (UCNC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11493))

Abstract

Given a proposed unconventional computing substrate, we can ask: Does it actually compute? If so, how well does it compute? Can it be made to compute better? Given a proposed unconventional computational model we can ask: How powerful is the model? Can it be implemented in a substrate? How faithfully or efficiently can it be implemented? Given complete freedom in the choice of model and substrate, we can ask: Can we co-design a model and substrate to work well together?

Here I propose an approach to posing and answering these questions, building on an existing definition of physical computing and framework for characterising the computing properties of given substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adamatzky, A. (ed.): Game of Life Cellular Automata. Springer, London (2010). https://doi.org/10.1007/978-1-84996-217-9

    Book  MATH  Google Scholar 

  2. Blakey, E.: Unconventional computers and unconventional complexity measures. In: Adamatzky, A. (ed.) Advances in Unconventional Computing. ECC, vol. 22, pp. 165–182. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-33924-5_7

    Chapter  Google Scholar 

  3. Broersma, H., Stepney, S., Wendin, G.: Computability and complexity of unconventional computing devices. In: Stepney, S., Rasmussen, S., Amos, M. (eds.) Computational Matter. NCS, pp. 185–229. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-65826-1_11

    Chapter  Google Scholar 

  4. Dale, M.: Neuroevolution of hierarchical reservoir computers. In: GECCO 2018, Kyoto, Japan, pp. 410–417. ACM (2018)

    Google Scholar 

  5. Dale, M., Dewhirst, J., O’Keefe, S., Sebald, A., Stepney, S., Trefzer, M.A.: The role of structure and complexity on reservoir computing quality. In: McQuillan, I., Seki, S. (eds.) UCNC 2019. LNCS, vol. 11493, pp. 52–64. Springer, Heidelberg (2019)

    Google Scholar 

  6. Dale, M., Miller, J.F., Stepney, S.: Reservoir computing as a model for In-Materio computing. In: Adamatzky, A. (ed.) Advances in Unconventional Computing. ECC, vol. 22, pp. 533–571. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-33924-5_22

    Chapter  Google Scholar 

  7. Dale, M., Miller, J.F., Stepney, S., Trefzer, M.A.: A substrate-independent framework to characterise reservoir computers. arXiv:1810.07135 (2018)

  8. Dini, P., Nehaniv, C.L., Rothstein, E., Schreckling, D., Horváth, G.: BIOMICS: a theory of interaction computing. Computational Matter. NCS, pp. 249–268. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-65826-1_13

    Chapter  Google Scholar 

  9. Drossel, B.: Random boolean networks. In: Schuster, H.G. (ed.) Reviews of Nonlinear Dynamics and Complexity, vol. 1. Wiley, Weinheim (2008)

    Google Scholar 

  10. Faulconbridge, A., Stepney, S., Miller, J.F., Caves, L.S.D.: RBN-World: a sub-symbolic artificial chemistry. In: Kampis, G., Karsai, I., Szathmáry, E. (eds.) ECAL 2009. LNCS (LNAI), vol. 5777, pp. 377–384. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21283-3_47

    Chapter  Google Scholar 

  11. Faulkner, P., Krastev, M., Sebald, A., Stepney, S.: Sub-symbolic artificial chemistries. In: Stepney, S., Adamatzky, A. (eds.) Inspired by Nature. ECC, vol. 28, pp. 287–322. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-67997-6_14

    Chapter  Google Scholar 

  12. Giavitto, J.L., Michel, O.: MGS: a rule-based programming language for complex objects and collections. ENTCS 59(4), 286–304 (2001)

    MATH  Google Scholar 

  13. Gundersen, M.S.: Reservoir Computing using Quasi-Uniform Cellular Automata. Master’s thesis, NTNU, Norway (2017)

    Google Scholar 

  14. Horsman, C., Stepney, S., Wagner, R.C., Kendon, V.: When does a physical system compute? Proc. R. Soc. A 470(2169), 20140182 (2014)

    Article  Google Scholar 

  15. Horsman, D., Kendon, V., Stepney, S.: Abstraction/representation theory and the natural science of computation. In: Cuffaro, M.E., Fletcher, S.C. (eds.) Physical Perspectives on Computation, Computational Perspectives on Physics, pp. 127–149. Cambridge University Press, Cambridge (2018)

    Chapter  Google Scholar 

  16. Horsman, D., Stepney, S., Kendon, V.: The natural science of computation. Commun. ACM 60(8), 31–34 (2017)

    Article  Google Scholar 

  17. Horsman, D.C.: Abstraction/representation theory for heterotic physical computing. Philos. Trans. R. Soc. A 373, 20140224 (2015)

    Article  Google Scholar 

  18. Jaeger, H.: The “echo state” approach to analysing and training recurrent neural networks - with an erratum note. GMD Report 148, German National Research Center for Information Technology (2010)

    Google Scholar 

  19. Kaneko, K.: Spatiotemporal intermittency in coupled map lattices. Progress Theoret. Phys. 74(5), 1033–1044 (1985)

    Article  MathSciNet  Google Scholar 

  20. Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22(3), 437–467 (1969)

    Article  MathSciNet  Google Scholar 

  21. Kauffman, S.A.: The Origins of Order. Oxford University Press, Oxford (1993)

    Google Scholar 

  22. Kendon, V., Sebald, A., Stepney, S.: Heterotic computing: past, present and future. Phil. Trans. R. Soc. A 373, 20140225 (2015)

    Article  Google Scholar 

  23. Kendon, V., Sebald, A., Stepney, S., Bechmann, M., Hines, P., Wagner, R.C.: Heterotic computing. In: Calude, C.S., Kari, J., Petre, I., Rozenberg, G. (eds.) UC 2011. LNCS, vol. 6714, pp. 113–124. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21341-0_16

    Chapter  Google Scholar 

  24. Krastev, M., Sebald, A., Stepney, S.: Emergent bonding properties in the Spiky RBN AChem. In: ALife 2016, Cancun, Mexico, July 2016, pp. 600–607. MIT Press (2016)

    Google Scholar 

  25. Lehman, J., Stanley, K.O.: Exploiting open-endedness to solve problems through the search for novelty. In: ALIFE XI. pp. 329–336. MIT Press (2008)

    Google Scholar 

  26. Lehman, J., Stanley, K.O.: Efficiently evolving programs through the search for novelty. In: GECCO 2010, pp. 837–844. ACM (2010)

    Google Scholar 

  27. Lehman, J., Stanley, K.O.: Abandoning objectives: evolution through the search for novelty alone. Evol. Comput. 19(2), 189–223 (2011)

    Article  Google Scholar 

  28. Nehaniv, C.L., Rhodes, J., Egri-Nagy, A., Dini, P., Morris, E.R., Horváth, G., Karimi, F., Schreckling, D., Schilstra, M.J.: Symmetry structure in discrete models of biochemical systems: natural subsystems and the weak control hierarchy in a new model of computation driven by interactions. Phil. Trans. R. Soc. A 373, 20140223 (2015)

    Article  MathSciNet  Google Scholar 

  29. Sinha, S., Biswas, D.: Adaptive dynamics on a chaotic lattice. Phys. Rev. Lett. 71(13), 2010–2013 (1993)

    Article  Google Scholar 

  30. Sinha, S., Ditto, W.L.: Dynamics based computation. Phys. Rev. Lett. 81(10), 2156–2159 (1998)

    Article  Google Scholar 

  31. Sinha, S., Ditto, W.L.: Computing with distributed chaos. Phys. Rev. E 60(1), 363–377 (1999)

    Article  Google Scholar 

  32. Sipper, M.: Quasi-uniform computation-universal cellular automata. In: Morán, F., Moreno, A., Merelo, J.J., Chacón, P. (eds.) ECAL 1995. LNCS, vol. 929, pp. 544–554. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59496-5_324

    Chapter  Google Scholar 

  33. Spicher, A., Michel, O., Giavitto, J.-L.: A topological framework for the specification and the simulation of discrete dynamical systems. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, pp. 238–247. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30479-1_25

    Chapter  Google Scholar 

  34. Stepney, S.: Nonclassical computation: a dynamical systems perspective. In: Rozenberg, G., Bäck, T., Kok, J.N. (eds.) Handbook of Natural Computing, vol. 4, pp. 1979–2025. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-540-92910-9_59

    Chapter  Google Scholar 

  35. Stepney, S., Kendon, V.: The role of structure and complexity on reservoir computing quality. In: McQuillan, I., Seki, S. (eds.) UCNC 2019. LNCS, vol. 11493, pp. 52–64. Springer, Heidelberg (2019)

    Google Scholar 

  36. von Neumann, J.: Theory of Self-Reproducing Automata (edited by A.W. Burks). University of Illinois Press, Urbana (1966)

    Google Scholar 

  37. Wolfram, S.: Statistical mechanics of cellular automata. Rev. Mod. Phys. 55(3), 601–644 (1983)

    Article  MathSciNet  Google Scholar 

  38. Wolfram, S.: Universality and complexity in cellular automata. Physica D 10(1), 1–35 (1984)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Thanks to my colleagues Matt Dale, Dom Horsman, Viv Kendon, Julian Miller, Simon O’Keefe, Angelika Sebald, and Martin Trefzer for illuminating discussions, and collaboration on the work that has led to these ideas.

This work is part-funded by the SpInspired project, UK Engineering and Physical Sciences Research Council (EPSRC) grant EP/R032823/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Stepney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stepney, S. (2019). Co-Designing the Computational Model and the Computing Substrate. In: McQuillan, I., Seki, S. (eds) Unconventional Computation and Natural Computation. UCNC 2019. Lecture Notes in Computer Science(), vol 11493. Springer, Cham. https://doi.org/10.1007/978-3-030-19311-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19311-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19310-2

  • Online ISBN: 978-3-030-19311-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics